# Shift invariant measures and simple spectrum

Colloquium Mathematicae (2000)

- Volume: 84/85, Issue: 2, page 385-394
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topKłopotowski, A., and Nadkarni, M.. "Shift invariant measures and simple spectrum." Colloquium Mathematicae 84/85.2 (2000): 385-394. <http://eudml.org/doc/210821>.

@article{Kłopotowski2000,

abstract = {We consider some descriptive properties of supports of shift invariant measures on $ℂ^\{ℤ\}$ under the assumption that the closed linear span (in $L^\{2\}$) of the co-ordinate functions on $ℂ^\{ℤ\}$ is all of $L^\{2\}$.},

author = {Kłopotowski, A., Nadkarni, M.},

journal = {Colloquium Mathematicae},

keywords = {good measure; linked component; shift; simple spectrum; good set},

language = {eng},

number = {2},

pages = {385-394},

title = {Shift invariant measures and simple spectrum},

url = {http://eudml.org/doc/210821},

volume = {84/85},

year = {2000},

}

TY - JOUR

AU - Kłopotowski, A.

AU - Nadkarni, M.

TI - Shift invariant measures and simple spectrum

JO - Colloquium Mathematicae

PY - 2000

VL - 84/85

IS - 2

SP - 385

EP - 394

AB - We consider some descriptive properties of supports of shift invariant measures on $ℂ^{ℤ}$ under the assumption that the closed linear span (in $L^{2}$) of the co-ordinate functions on $ℂ^{ℤ}$ is all of $L^{2}$.

LA - eng

KW - good measure; linked component; shift; simple spectrum; good set

UR - http://eudml.org/doc/210821

ER -

## References

top- [1] R. C. Cowsik, A. Kłopotowski and M. G. Nadkarni, When is f(x,y) = u(x) + v(y)?, Proc. Indian Acad. Sci. (Math. Sci.) 109 (1999), 57-64. Zbl0986.26007
- [2] A. Kłopotowski and M. G. Nadkarni, On transformations with simple Lebesgue spectrum, ibid., 47-55. Zbl0993.28006
- [3] M. Laczkovich, Closed sets without measurable matchings, Proc. Amer. Math. Soc. 103 (1998), 894-896.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.