Shift invariant measures and simple spectrum
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 2, page 385-394
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topKłopotowski, A., and Nadkarni, M.. "Shift invariant measures and simple spectrum." Colloquium Mathematicae 84/85.2 (2000): 385-394. <http://eudml.org/doc/210821>.
@article{Kłopotowski2000,
abstract = {We consider some descriptive properties of supports of shift invariant measures on $ℂ^\{ℤ\}$ under the assumption that the closed linear span (in $L^\{2\}$) of the co-ordinate functions on $ℂ^\{ℤ\}$ is all of $L^\{2\}$.},
author = {Kłopotowski, A., Nadkarni, M.},
journal = {Colloquium Mathematicae},
keywords = {good measure; linked component; shift; simple spectrum; good set},
language = {eng},
number = {2},
pages = {385-394},
title = {Shift invariant measures and simple spectrum},
url = {http://eudml.org/doc/210821},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Kłopotowski, A.
AU - Nadkarni, M.
TI - Shift invariant measures and simple spectrum
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 2
SP - 385
EP - 394
AB - We consider some descriptive properties of supports of shift invariant measures on $ℂ^{ℤ}$ under the assumption that the closed linear span (in $L^{2}$) of the co-ordinate functions on $ℂ^{ℤ}$ is all of $L^{2}$.
LA - eng
KW - good measure; linked component; shift; simple spectrum; good set
UR - http://eudml.org/doc/210821
ER -
References
top- [1] R. C. Cowsik, A. Kłopotowski and M. G. Nadkarni, When is f(x,y) = u(x) + v(y)?, Proc. Indian Acad. Sci. (Math. Sci.) 109 (1999), 57-64. Zbl0986.26007
- [2] A. Kłopotowski and M. G. Nadkarni, On transformations with simple Lebesgue spectrum, ibid., 47-55. Zbl0993.28006
- [3] M. Laczkovich, Closed sets without measurable matchings, Proc. Amer. Math. Soc. 103 (1998), 894-896.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.