A Boolean-valued probability theory
Page 1 Next
Ivan Kramosil (1978)
Kybernetika
J. Kucharczak (1973)
Colloquium Mathematicae
Angelina Ilić-Stepić (2010)
Publications de l'Institut Mathématique
Ivan Kramosil (2002)
Kybernetika
It is a well-known fact that the Dempster combination rule for combination of uncertainty degrees coming from two or more sources is legitimate only if the combined empirical data, charged with uncertainty and taken as random variables, are statistically (stochastically) independent. We shall prove, however, that for a particular but large enough class of probability measures, an analogy of Dempster combination rule, preserving its extensional character but using some nonstandard and boolean-like...
Ivan Kramosil (1988)
Kybernetika
Dragan Banjević, Zoran Ivković (1980)
Publications de l'Institut Mathématique
Ivan Kramosil (1996)
Kybernetika
Dotto, Oclide José (1983/1984)
Portugaliae mathematica
Tatjana Stojanović, Ana Kaplarević-Mališić, Zoran Ognjanović (2010)
Kragujevac Journal of Mathematics
Robert Kaufman (1971)
Annales de l'institut Fourier
The note discusses a probabilistic method for constructing “small” sets, with regard to differentiable transformations and to quantitative measures of independence.
Milan Studený (1989)
Kybernetika
Ton Sales (1994)
Mathware and Soft Computing
Logic and Probability, as theories, have been developed quite independently and, with a few exceptions (like Boole's), have largely ignored each other. And nevertheless they share a lot of similarities, as well a considerable common ground. The exploration of the shared concepts and their mathematical treatment and unification is here attempted following the lead of illustrious researchers (Reichenbach, Carnap, Popper, Gaifman, Scott & Krauss, Fenstad, Miller, David Lewis, Stalnaker, Hintikka...
B. Aniszczyk, J. Burzyk, A. Kamiński (1987)
Colloquium Mathematicae
María Angeles Gil Alvarez (1983)
Trabajos de Estadística e Investigación Operativa
En el artículo ([7]), M. Martín propone dos caracterizaciones axiomáticas para la varianza sugiriendo la posibilidad de caracterizarla de forma más intuitiva como una medida de incertidumbre que tenga en cuenta el soporte de la probabilidad, además del valor de ésta.El presente trabajo está dedicado a establecer una caracterización en tal sentido, siguiendo la línea de la axiomática de D. K. Faddeyew para la entropía de Shannon y de la axiomática propuesta en ([3]) para la medida definida en ([2]).Queremos...
Gzyl, Henryk (2004)
Boletín de la Asociación Matemática Venezolana
Y. Kerbrat, G. Le Calve (1968/1969)
Publications mathématiques et informatique de Rennes
Lothar Rogge (1972)
Manuscripta mathematica
(1977)
Annales de l'I.H.P. Probabilités et statistiques
František Matúš (2003)
Annales de l'I.H.P. Probabilités et statistiques
A. Montanaro, A. Bressan (1983)
Rendiconti del Seminario Matematico della Università di Padova
Page 1 Next