A note on a conjecture of Jeśmanowicz
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 1, page 25-30
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topDeng, Moujie, and Cohen, G.. "A note on a conjecture of Jeśmanowicz." Colloquium Mathematicae 86.1 (2000): 25-30. <http://eudml.org/doc/210838>.
@article{Deng2000,
abstract = {Let a, b, c be relatively prime positive integers such that $a^2+b^2=c^2$. Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of $(an)^x+(bn)^y=(cn)^z$ in positive integers is x=y=z=2. If n=1, then, equivalently, the equation $(u^2-v^2)^x+(2uv)^y=(u^2+v^2)^z$, for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.},
author = {Deng, Moujie, Cohen, G.},
journal = {Colloquium Mathematicae},
keywords = {exponential Diophantine equation; Jeśmanowicz’s conjecture},
language = {eng},
number = {1},
pages = {25-30},
title = {A note on a conjecture of Jeśmanowicz},
url = {http://eudml.org/doc/210838},
volume = {86},
year = {2000},
}
TY - JOUR
AU - Deng, Moujie
AU - Cohen, G.
TI - A note on a conjecture of Jeśmanowicz
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 1
SP - 25
EP - 30
AB - Let a, b, c be relatively prime positive integers such that $a^2+b^2=c^2$. Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of $(an)^x+(bn)^y=(cn)^z$ in positive integers is x=y=z=2. If n=1, then, equivalently, the equation $(u^2-v^2)^x+(2uv)^y=(u^2+v^2)^z$, for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.
LA - eng
KW - exponential Diophantine equation; Jeśmanowicz’s conjecture
UR - http://eudml.org/doc/210838
ER -
References
top- [1] J. R. Chen, On Jeśmanowicz' conjecture, Acta Sci. Natur. Univ. Szechan 2 (1962), 19-25 (in Chinese).
- [2] V. A. Dem'janenko [V. A. Dem'yanenko], On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
- [3] M. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), 515-524. Zbl0916.11020
- [4] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202 (in Polish).
- [5] C. Ko, On the Diophantine equation , Acta Sci. Natur. Univ. Szechan 3 (1959), 25-34 (in Chinese).
- [6] M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98. Zbl0876.11013
- [7] W. T. Lu, On the Pythagorean numbers , 4n and , Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
- [8] W. Sierpiński, On the equation , Wiadom. Mat. 1 (1955/56), 194-195 (in Polish). Zbl0074.27204
- [9] K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349. Zbl0822.11025
- [10] K. Takakuwa, A remark on Jeśmanowicz' conjecture, ibid. 72 (1996), 109-110. Zbl0863.11025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.