On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ
A. Grytczuk; F. Luca; M. Wójtowicz
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 1, page 31-36
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topGrytczuk, A., Luca, F., and Wójtowicz, M.. "On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ." Colloquium Mathematicae 86.1 (2000): 31-36. <http://eudml.org/doc/210839>.
@article{Grytczuk2000,
abstract = {For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.},
author = {Grytczuk, A., Luca, F., Wójtowicz, M.},
journal = {Colloquium Mathematicae},
keywords = {composition of arithmetic functions; Euler's function; sum of divisors function; lower density},
language = {eng},
number = {1},
pages = {31-36},
title = {On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ},
url = {http://eudml.org/doc/210839},
volume = {86},
year = {2000},
}
TY - JOUR
AU - Grytczuk, A.
AU - Luca, F.
AU - Wójtowicz, M.
TI - On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 1
SP - 31
EP - 36
AB - For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.
LA - eng
KW - composition of arithmetic functions; Euler's function; sum of divisors function; lower density
UR - http://eudml.org/doc/210839
ER -
References
top- [1] U. Balakrishnan, Some remark on σ(ϕ(n)), Fibonacci Quart. 32 (1994), 293-296.
- [2] G. L. Cohen, On a conjecture of Mąkowski and Schinzel, Colloq. Math. 74 (1997), 1-8.
- [3] M. Filaseta, S. W. Graham and C. Nicol, On the composition of σ(n) and ϕ(n), Abstracts Amer. Math. Soc. 13 (1992), no. 4, p. 137.
- [4] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
- [5] A. Mąkowski and A. Schinzel, On the functions ϕ(n) and σ(n), Colloq. Math. 13 (1964-1965), 95-99.
- [6] D. S. Mitrinović, J. Sándor and B. Crstici, Handbook of Number Theory, Kluwer, 1996.
- [7] C. Pomerance, On the composition of the arithmetic functions σ and ϕ, Colloq. Math. 58 (1989), 11-15.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.