H 1 -BMO duality on graphs

Emmanuel Russ

Colloquium Mathematicae (2000)

  • Volume: 86, Issue: 1, page 67-91
  • ISSN: 0010-1354

Abstract

top
On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space H m a x 1 is equal to H a t 1 , and therefore that its dual is BMO. We also prove the atomic decomposition for H m a x p for p ≤ 1 close enough to 1.

How to cite

top

Russ, Emmanuel. "$H^1$-BMO duality on graphs." Colloquium Mathematicae 86.1 (2000): 67-91. <http://eudml.org/doc/210842>.

@article{Russ2000,
abstract = {On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space $H^\{1\}_\{max\}$ is equal to $H_\{at\}^\{1\}$, and therefore that its dual is BMO. We also prove the atomic decomposition for $H^\{p\}_\{max\}$ for p ≤ 1 close enough to 1.},
author = {Russ, Emmanuel},
journal = {Colloquium Mathematicae},
keywords = {Markov kernel; atomic decomposition; -BMO; maximal Hardy space; BMO space; infinite connected graph; Riemannian manifold; doubling property},
language = {eng},
number = {1},
pages = {67-91},
title = {$H^1$-BMO duality on graphs},
url = {http://eudml.org/doc/210842},
volume = {86},
year = {2000},
}

TY - JOUR
AU - Russ, Emmanuel
TI - $H^1$-BMO duality on graphs
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 1
SP - 67
EP - 91
AB - On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space $H^{1}_{max}$ is equal to $H_{at}^{1}$, and therefore that its dual is BMO. We also prove the atomic decomposition for $H^{p}_{max}$ for p ≤ 1 close enough to 1.
LA - eng
KW - Markov kernel; atomic decomposition; -BMO; maximal Hardy space; BMO space; infinite connected graph; Riemannian manifold; doubling property
UR - http://eudml.org/doc/210842
ER -

References

top
  1. [AC] P. Auscher and T. Coulhon, Gaussian lower bounds for random walks from elliptic regularity, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), 605-630. Zbl0933.60047
  2. [CAR] L. Carleson, Two remarks on H 1 and BMO, Adv. Math. 22 (1976), 269-277. Zbl0357.46058
  3. [COI] R. Coifman, A real-variable characterization of H p , Studia Math. 51 (1974), 269-274. Zbl0289.46037
  4. [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  5. [DEL1] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997. 
  6. [DEL2] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), 181-232. Zbl0922.60060
  7. [HOR] L. Hörmander, L p estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78. Zbl0156.12201
  8. [LAT] R. H. Latter, A decomposition of H p ( n ) in terms of atoms, Studia Math. 62 (1978), 92-101. 
  9. [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. Zbl0431.46018
  10. [MS2] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309. Zbl0431.46019
  11. [MEY] Y. Meyer, Dualité entre H 1 et BMO sur les espaces de type homogène par Lennart Carleson, unpublished notes. 
  12. [RUS] E. Russ, H 1 -BMO duality on Riemannian manifolds, preprint. 
  13. [SC] L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat. 28 (1990), 315-331. Zbl0715.43009
  14. [ST] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. 
  15. [UCH] A. Uchiyama, A maximal function characterization of H p on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592. Zbl0503.46020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.