-BMO duality on graphs
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 1, page 67-91
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topRuss, Emmanuel. "$H^1$-BMO duality on graphs." Colloquium Mathematicae 86.1 (2000): 67-91. <http://eudml.org/doc/210842>.
@article{Russ2000,
abstract = {On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space $H^\{1\}_\{max\}$ is equal to $H_\{at\}^\{1\}$, and therefore that its dual is BMO. We also prove the atomic decomposition for $H^\{p\}_\{max\}$ for p ≤ 1 close enough to 1.},
author = {Russ, Emmanuel},
journal = {Colloquium Mathematicae},
keywords = {Markov kernel; atomic decomposition; -BMO; maximal Hardy space; BMO space; infinite connected graph; Riemannian manifold; doubling property},
language = {eng},
number = {1},
pages = {67-91},
title = {$H^1$-BMO duality on graphs},
url = {http://eudml.org/doc/210842},
volume = {86},
year = {2000},
}
TY - JOUR
AU - Russ, Emmanuel
TI - $H^1$-BMO duality on graphs
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 1
SP - 67
EP - 91
AB - On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space $H^{1}_{max}$ is equal to $H_{at}^{1}$, and therefore that its dual is BMO. We also prove the atomic decomposition for $H^{p}_{max}$ for p ≤ 1 close enough to 1.
LA - eng
KW - Markov kernel; atomic decomposition; -BMO; maximal Hardy space; BMO space; infinite connected graph; Riemannian manifold; doubling property
UR - http://eudml.org/doc/210842
ER -
References
top- [AC] P. Auscher and T. Coulhon, Gaussian lower bounds for random walks from elliptic regularity, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), 605-630. Zbl0933.60047
- [CAR] L. Carleson, Two remarks on and BMO, Adv. Math. 22 (1976), 269-277. Zbl0357.46058
- [COI] R. Coifman, A real-variable characterization of , Studia Math. 51 (1974), 269-274. Zbl0289.46037
- [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [DEL1] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997.
- [DEL2] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), 181-232. Zbl0922.60060
- [HOR] L. Hörmander, estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78. Zbl0156.12201
- [LAT] R. H. Latter, A decomposition of in terms of atoms, Studia Math. 62 (1978), 92-101.
- [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. Zbl0431.46018
- [MS2] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309. Zbl0431.46019
- [MEY] Y. Meyer, Dualité entre et BMO sur les espaces de type homogène par Lennart Carleson, unpublished notes.
- [RUS] E. Russ, -BMO duality on Riemannian manifolds, preprint.
- [SC] L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat. 28 (1990), 315-331. Zbl0715.43009
- [ST] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [UCH] A. Uchiyama, A maximal function characterization of on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592. Zbl0503.46020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.