Gaussian lower bounds for random walks from elliptic regularity

Pascal Auscher; Thierry Coulhon

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 5, page 605-630
  • ISSN: 0246-0203

How to cite

top

Auscher, Pascal, and Coulhon, Thierry. "Gaussian lower bounds for random walks from elliptic regularity." Annales de l'I.H.P. Probabilités et statistiques 35.5 (1999): 605-630. <http://eudml.org/doc/77641>.

@article{Auscher1999,
author = {Auscher, Pascal, Coulhon, Thierry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reversible Markov chains; infinite graphs; Poincaré inequalities},
language = {eng},
number = {5},
pages = {605-630},
publisher = {Gauthier-Villars},
title = {Gaussian lower bounds for random walks from elliptic regularity},
url = {http://eudml.org/doc/77641},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Auscher, Pascal
AU - Coulhon, Thierry
TI - Gaussian lower bounds for random walks from elliptic regularity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 5
SP - 605
EP - 630
LA - eng
KW - reversible Markov chains; infinite graphs; Poincaré inequalities
UR - http://eudml.org/doc/77641
ER -

References

top
  1. [1] P. Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc.2 (54) (1996) 284-296. Zbl0863.35020MR1405056
  2. [2] M. Christ, Temporal regularity for random walk on discrete nilpotent groups, J. Fourier Analysis Appl. (Kahane special issue) (1995) 141-151. Zbl0889.60007MR1364882
  3. [3] T. Coulhon, Analysis on graphs with regular volume growth, Symposia Math., to appear. Zbl0960.58021
  4. [4] T. Coulhon and A. Grigor'yan, Random walks on graphs with regular volume growth, G.A.F.A.8 (1998) 656-701. Zbl0918.60053MR1633979
  5. [5] T. Coulhon and L. Saloff-Coste, Minorations pour les chaînes de Markov unidimensionnelles, Probab. Theory Related Fields97 (1993) 423-431. Zbl0792.60063MR1245253
  6. [6] E. De Giorgi, Sulla differenziabilita e l'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat.3 (3) (1957) 25- 43. Zbl0084.31901MR93649
  7. [7] T. Delmotte, Inégalité de Harnack elliptique sur les graphes, Coll. Math.72 (1) (1997) 19-37. Zbl0871.31008MR1425544
  8. [8] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoam.15 (1) (1999) 181-232. Zbl0922.60060MR1681641
  9. [9] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997. 
  10. [10] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
  11. [11] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhaüser, 1993. Zbl0786.35001MR1239172
  12. [12] A. Grigor'yan, The heat equation on non-compact Riemannian manifolds, Matem. Sbornik182 (1) (1991) 55-87 (in Russian); English translation: Math. USSR Sb.72 (1) (1992) 47-77. Zbl0776.58035MR1098839
  13. [13] P. Hajlasz and P. Koskela, Sobolev met Poincaré, to appear in Memoirs of the Amer. Math. Soc. Zbl0954.46022MR1683160
  14. [14] W. Hebisch and L. Saloff-COSTE, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab.21 (1993) 673-709. Zbl0776.60086MR1217561
  15. [15] C. Morrey, Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR202511
  16. [16] E. Russ, Riesz transforms on graphs for 1 ≤ p ≤ 2, Math. Scand., to appear. Zbl1008.60085MR1776969
  17. [17] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math. J., I.M.R.N.2 (1992) 27-38. Zbl0769.58054MR1150597
  18. [18] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis4 (4) (1995) 429-467. Zbl0840.31006MR1354894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.