Gaussian lower bounds for random walks from elliptic regularity
Pascal Auscher; Thierry Coulhon
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 5, page 605-630
- ISSN: 0246-0203
Access Full Article
topHow to cite
topAuscher, Pascal, and Coulhon, Thierry. "Gaussian lower bounds for random walks from elliptic regularity." Annales de l'I.H.P. Probabilités et statistiques 35.5 (1999): 605-630. <http://eudml.org/doc/77641>.
@article{Auscher1999,
author = {Auscher, Pascal, Coulhon, Thierry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reversible Markov chains; infinite graphs; Poincaré inequalities},
language = {eng},
number = {5},
pages = {605-630},
publisher = {Gauthier-Villars},
title = {Gaussian lower bounds for random walks from elliptic regularity},
url = {http://eudml.org/doc/77641},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Auscher, Pascal
AU - Coulhon, Thierry
TI - Gaussian lower bounds for random walks from elliptic regularity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 5
SP - 605
EP - 630
LA - eng
KW - reversible Markov chains; infinite graphs; Poincaré inequalities
UR - http://eudml.org/doc/77641
ER -
References
top- [1] P. Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc.2 (54) (1996) 284-296. Zbl0863.35020MR1405056
- [2] M. Christ, Temporal regularity for random walk on discrete nilpotent groups, J. Fourier Analysis Appl. (Kahane special issue) (1995) 141-151. Zbl0889.60007MR1364882
- [3] T. Coulhon, Analysis on graphs with regular volume growth, Symposia Math., to appear. Zbl0960.58021
- [4] T. Coulhon and A. Grigor'yan, Random walks on graphs with regular volume growth, G.A.F.A.8 (1998) 656-701. Zbl0918.60053MR1633979
- [5] T. Coulhon and L. Saloff-Coste, Minorations pour les chaînes de Markov unidimensionnelles, Probab. Theory Related Fields97 (1993) 423-431. Zbl0792.60063MR1245253
- [6] E. De Giorgi, Sulla differenziabilita e l'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat.3 (3) (1957) 25- 43. Zbl0084.31901MR93649
- [7] T. Delmotte, Inégalité de Harnack elliptique sur les graphes, Coll. Math.72 (1) (1997) 19-37. Zbl0871.31008MR1425544
- [8] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoam.15 (1) (1999) 181-232. Zbl0922.60060MR1681641
- [9] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997.
- [10] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
- [11] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhaüser, 1993. Zbl0786.35001MR1239172
- [12] A. Grigor'yan, The heat equation on non-compact Riemannian manifolds, Matem. Sbornik182 (1) (1991) 55-87 (in Russian); English translation: Math. USSR Sb.72 (1) (1992) 47-77. Zbl0776.58035MR1098839
- [13] P. Hajlasz and P. Koskela, Sobolev met Poincaré, to appear in Memoirs of the Amer. Math. Soc. Zbl0954.46022MR1683160
- [14] W. Hebisch and L. Saloff-COSTE, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab.21 (1993) 673-709. Zbl0776.60086MR1217561
- [15] C. Morrey, Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR202511
- [16] E. Russ, Riesz transforms on graphs for 1 ≤ p ≤ 2, Math. Scand., to appear. Zbl1008.60085MR1776969
- [17] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math. J., I.M.R.N.2 (1992) 27-38. Zbl0769.58054MR1150597
- [18] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis4 (4) (1995) 429-467. Zbl0840.31006MR1354894
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.