Roots of Nakayama and Auslander-Reiten translations

Helmut Lenzing; Andrzej Skowroński

Colloquium Mathematicae (2000)

  • Volume: 86, Issue: 2, page 209-230
  • ISSN: 0010-1354

Abstract

top
We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.

How to cite

top

Lenzing, Helmut, and Skowroński, Andrzej. "Roots of Nakayama and Auslander-Reiten translations." Colloquium Mathematicae 86.2 (2000): 209-230. <http://eudml.org/doc/210851>.

@article{Lenzing2000,
abstract = {We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.},
author = {Lenzing, Helmut, Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {finite dimensional algebras; quivers; uniserial modules; representations; derived categories; tilting sheaves; concealed-canonical algebras; repetitive algebras; wild algebras},
language = {eng},
number = {2},
pages = {209-230},
title = {Roots of Nakayama and Auslander-Reiten translations},
url = {http://eudml.org/doc/210851},
volume = {86},
year = {2000},
}

TY - JOUR
AU - Lenzing, Helmut
AU - Skowroński, Andrzej
TI - Roots of Nakayama and Auslander-Reiten translations
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 2
SP - 209
EP - 230
AB - We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.
LA - eng
KW - finite dimensional algebras; quivers; uniserial modules; representations; derived categories; tilting sheaves; concealed-canonical algebras; repetitive algebras; wild algebras
UR - http://eudml.org/doc/210851
ER -

References

top
  1. [1] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. Zbl0686.16011
  2. [2] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136. Zbl0537.16024
  3. [3] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Springer, 1972. Zbl0239.20040
  4. [4] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297. 
  5. [5] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. Zbl0635.16017
  6. [6] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. Zbl0516.16023
  7. [7] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. Zbl0488.16021
  8. [8] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one and representations of tubular algebras, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. Zbl0809.16012
  9. [9] H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700. Zbl0965.16008
  10. [10] H. Lenzing and A. Skowroński, On selfinjective algebras of Euclidean type, Colloq. Math. 79 (1999), 71-76. Zbl0947.16005
  11. [11] H. Lenzing and A. Skowroński, Selfinjective algebras of wild canonical type, preprint, 1999. 
  12. [12] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. Zbl0677.16008
  13. [13] Y. Ohnuki, K. Takeda and K. Yamagata, Automorphisms of repetitive algebras, J. Algebra, to appear. Zbl1035.16010
  14. [14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  15. [15] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199. Zbl0653.16021
  16. [16] A. Skowroński and K. Yamagata, Socle deformations of selfinjective algebras, Proc. London Math. Soc. 72 (1996), 545-566. Zbl0862.16001
  17. [17] A. Skowroński and K. Yamagata, Galois coverings of selfinjective algebras by repetitive algebras, Trans. Amer. Math. Soc. 351 (1999), 715-734. Zbl0915.16006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.