The semi-index product formula
Fundamenta Mathematicae (1992)
- Volume: 140, Issue: 2, page 99-120
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topJezierski, Jerzy. "The semi-index product formula." Fundamenta Mathematicae 140.2 (1992): 99-120. <http://eudml.org/doc/211940>.
@article{Jezierski1992,
	abstract = {We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula
   |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| $(f_b,g_b:p^\{-1\}(b) ∩ A)$
to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and $N(f_b,g_b)$.},
	author = {Jezierski, Jerzy},
	journal = {Fundamenta Mathematicae},
	keywords = {Nielsen class; coincidence semi-index; Nielsen numbers},
	language = {eng},
	number = {2},
	pages = {99-120},
	title = {The semi-index product formula},
	url = {http://eudml.org/doc/211940},
	volume = {140},
	year = {1992},
}
TY  - JOUR
AU  - Jezierski, Jerzy
TI  - The semi-index product formula
JO  - Fundamenta Mathematicae
PY  - 1992
VL  - 140
IS  - 2
SP  - 99
EP  - 120
AB  - We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula
   |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| $(f_b,g_b:p^{-1}(b) ∩ A)$
to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and $N(f_b,g_b)$.
LA  - eng
KW  - Nielsen class; coincidence semi-index; Nielsen numbers
UR  - http://eudml.org/doc/211940
ER  - 
References
top- [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen number on non-orientable manifolds, Rocky Mountain J. Math., to appear. Zbl0787.55003
- [H] M. Hirsch, Differential Topology, Springer, New York 1976.
- [Je] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. Zbl0715.55002
- [J] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, R.I., 1983. Zbl0512.55003
- [V] J. Vick, Homology Theory, Academic Press, New York 1976.
- [W] J. A. Wolf, Spaces of Constant Curvature, Univ. of California, Berkeley 1972.
- [Y] C. Y. You, Fixed points of a fibre map, Pacific J. Math. 100 (1982), 217-241.
Citations in EuDML Documents
top- Jerzy Jezierski, The coincidence Nielsen number for maps into real projective spaces
- Jerzy Jezierski, The relative coincidence Nielsen number
- Jerzy Jezierski, The Nielsen coincidence theory on topological manifolds
- Jerzy Jezierski, On generalizing the Nielsen coincidence theory to non-oriented manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 