The relative coincidence Nielsen number

Jerzy Jezierski

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 1, page 1-18
  • ISSN: 0016-2736

Abstract

top
We define a relative coincidence Nielsen number N r e l ( f , g ) for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing N r e l ( f , g ) by the ordinary Nielsen numbers.

How to cite

top

Jezierski, Jerzy. "The relative coincidence Nielsen number." Fundamenta Mathematicae 149.1 (1996): 1-18. <http://eudml.org/doc/212106>.

@article{Jezierski1996,
abstract = {We define a relative coincidence Nielsen number $N_\{rel\}(f,g)$ for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing $N_\{rel\}(f,g)$ by the ordinary Nielsen numbers.},
author = {Jezierski, Jerzy},
journal = {Fundamenta Mathematicae},
keywords = {coincidence; Nielsen numbers; manifolds},
language = {eng},
number = {1},
pages = {1-18},
title = {The relative coincidence Nielsen number},
url = {http://eudml.org/doc/212106},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Jezierski, Jerzy
TI - The relative coincidence Nielsen number
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 1
SP - 1
EP - 18
AB - We define a relative coincidence Nielsen number $N_{rel}(f,g)$ for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing $N_{rel}(f,g)$ by the ordinary Nielsen numbers.
LA - eng
KW - coincidence; Nielsen numbers; manifolds
UR - http://eudml.org/doc/212106
ER -

References

top
  1. [B] R. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971. Zbl0216.19601
  2. [BS] R. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79. Zbl0757.55002
  3. [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85. Zbl0787.55003
  4. [Je1] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. Zbl0715.55002
  5. [Je2] J. Jezierski, The semi-index product formula, ibid. 140 (1992), 99-120. 
  6. [Je3] J. Jezierski, The coincidence Nielsen number for maps into real projective spaces, ibid. 140 (1992), 121-136. Zbl0811.55002
  7. [Je4] J. Jezierski, The coincidence Nielsen theory on topological manifolds, ibid. 143 (1993), 167-178. 
  8. [Je5] J. Jezierski, The Lefschetz coincidence number on non-orientable manifolds, submitted. 
  9. [Ji] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983. 
  10. [S1] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39. 
  11. [S2] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473. Zbl0553.55001
  12. [Y] C. Y. You, Fixed points of a fibre map, ibid. 100 (1982), 217-241. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.