Planar rational compacta and universality

S. Iliadis; S. Zafiridou

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 2, page 109-118
  • ISSN: 0016-2736

Abstract

top
We prove that in some families of planar rational compacta there are no universal elements.

How to cite

top

Iliadis, S., and Zafiridou, S.. "Planar rational compacta and universality." Fundamenta Mathematicae 141.2 (1992): 109-118. <http://eudml.org/doc/211956>.

@article{Iliadis1992,
abstract = {We prove that in some families of planar rational compacta there are no universal elements.},
author = {Iliadis, S., Zafiridou, S.},
journal = {Fundamenta Mathematicae},
keywords = {planar rational compactum; universal element},
language = {eng},
number = {2},
pages = {109-118},
title = {Planar rational compacta and universality},
url = {http://eudml.org/doc/211956},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Iliadis, S.
AU - Zafiridou, S.
TI - Planar rational compacta and universality
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 2
SP - 109
EP - 118
AB - We prove that in some families of planar rational compacta there are no universal elements.
LA - eng
KW - planar rational compactum; universal element
UR - http://eudml.org/doc/211956
ER -

References

top
  1. [I] S. D. Iliadis, The rim-type of spaces and the property of universality, Houston J. Math. 13 (1987), 373-388. Zbl0655.54025
  2. [K] J. L. Kelley, General Topology, Van Nostrand, Princeton 1957. 
  3. [Ku] K. Kuratowski, Topology, Vols. I, II, Academic Press, New York 1966, 1968. 
  4. [M-T] J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990). Zbl0721.54022
  5. [M-S] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. Zbl47.0176.01
  6. [N] G. Nöbeling, Über regular-eindimensionale Räume, Math. Ann. 104 (1931), 81-91. Zbl56.0506.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.