Planar rational compacta
L. Feggos; S. Iliadis; S. Zafiridou
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 1, page 49-54
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topFeggos, L., Iliadis, S., and Zafiridou, S.. "Planar rational compacta." Colloquium Mathematicae 68.1 (1995): 49-54. <http://eudml.org/doc/210292>.
@article{Feggos1995,
abstract = {In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.},
author = {Feggos, L., Iliadis, S., Zafiridou, S.},
journal = {Colloquium Mathematicae},
keywords = {rational continuum; universal rational space; planar continuum; rim-type},
language = {eng},
number = {1},
pages = {49-54},
title = {Planar rational compacta},
url = {http://eudml.org/doc/210292},
volume = {68},
year = {1995},
}
TY - JOUR
AU - Feggos, L.
AU - Iliadis, S.
AU - Zafiridou, S.
TI - Planar rational compacta
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 1
SP - 49
EP - 54
AB - In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.
LA - eng
KW - rational continuum; universal rational space; planar continuum; rim-type
UR - http://eudml.org/doc/210292
ER -
References
top- [1] L. E. Feggos, S. D. Iliadis and S. S. Zafiridou, Some families of planar rim-scattered spaces and universality, Houston J. Math. 20 (1994), 1-15. Zbl0836.54024
- [2] S. D. Iliadis, The rim-type of spaces and the property of universality, ibid. 13 (1987), 373-388. Zbl0655.54025
- [3] S. D. Iliadis, Rational spaces and the property of universality, Fund. Math. 131 (1988), 167-184. Zbl0694.54024
- [4] S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, ibid. 141 (1992), 109-118. Zbl0799.54024
- [5] K. Kuratowski, Topology, Vols. I, II, Academic Press, New York, 1966, 1968.
- [6] J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990). Zbl0721.54022
- [7] J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Math. 293 (1990).
- [8] G. Nöbeling, Über regulär-eindimensionale Räume, Math. Ann. 104 (1931), 81-91.
- [9] G. T. Whyburn, Topological Analysis, Princeton Univ. Press, Princeton, N.J., 1964. Zbl0186.55901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.