# Size levels for arcs

Fundamenta Mathematicae (1992)

- Volume: 141, Issue: 3, page 243-255
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topNadler, Sam, and West, T.. "Size levels for arcs." Fundamenta Mathematicae 141.3 (1992): 243-255. <http://eudml.org/doc/211963>.

@article{Nadler1992,

abstract = {We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.},

author = {Nadler, Sam, West, T.},

journal = {Fundamenta Mathematicae},

keywords = {hyperspace; cyclic elements; absolute retract; Whitney map; arc; cyclic element; size level},

language = {eng},

number = {3},

pages = {243-255},

title = {Size levels for arcs},

url = {http://eudml.org/doc/211963},

volume = {141},

year = {1992},

}

TY - JOUR

AU - Nadler, Sam

AU - West, T.

TI - Size levels for arcs

JO - Fundamenta Mathematicae

PY - 1992

VL - 141

IS - 3

SP - 243

EP - 255

AB - We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.

LA - eng

KW - hyperspace; cyclic elements; absolute retract; Whitney map; arc; cyclic element; size level

UR - http://eudml.org/doc/211963

ER -

## References

top- [EN] C. Eberhart and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1071-1034. Zbl0235.54037
- [K] K. Kuratowski, Topology, Vol. II, Academic Press, New York 1966.
- [N1] S. B. Nadler, Jr.. Hyperspaces of Sets, Marcel Dekker, New York 1978.
- [N2] S. B. Nadler, Some problems concerning hyperspaces, in: Topology Conference (V.P.I. and S.U.), R. F. Dickman, Jr. and P. Fletcher (eds.), Lecture Notes in Math. 375, Springer, New York 1974, 190-197.
- [P] A. Petrus, Contractibility of Whitney continua in C(X), General Topology Appl. 9 (1978), 275-288. Zbl0405.54006
- [W] G. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Amer. Math. Soc., Providence, R.I., 1949. Zbl0117.15804

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.