Hyperspaces of CW-complexes

Bao-Lin Guo; Katsuro Sakai

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 1, page 23-40
  • ISSN: 0016-2736

Abstract

top
It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.

How to cite

top

Guo, Bao-Lin, and Sakai, Katsuro. "Hyperspaces of CW-complexes." Fundamenta Mathematicae 143.1 (1993): 23-40. <http://eudml.org/doc/211990>.

@article{Guo1993,
abstract = {It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.},
author = {Guo, Bao-Lin, Sakai, Katsuro},
journal = {Fundamenta Mathematicae},
keywords = {CW-complex; hyperspace; the Vietoris topology; stratifiable space; AR(S); ANR(S); ; ; Vietoris topology},
language = {eng},
number = {1},
pages = {23-40},
title = {Hyperspaces of CW-complexes},
url = {http://eudml.org/doc/211990},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Guo, Bao-Lin
AU - Sakai, Katsuro
TI - Hyperspaces of CW-complexes
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 1
SP - 23
EP - 40
AB - It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.
LA - eng
KW - CW-complex; hyperspace; the Vietoris topology; stratifiable space; AR(S); ANR(S); ; ; Vietoris topology
UR - http://eudml.org/doc/211990
ER -

References

top
  1. [Bo1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. Zbl0175.19802
  2. [Bo2] C. R. Borges, A study of absolute extensor spaces, ibid. 31 (1969), 609-617. 
  3. [Bo3] C. R. Borges, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30. Zbl0276.54025
  4. [Bo4] C. R. Borges, Connectivity of function spaces, Canad. J. Math. 5 (1971), 759-763. Zbl0207.43201
  5. [Ca1] R. Cauty, Sur les sous-espaces des complexes simpliciaux, Bull. Soc. Math. France 100 (1972), 129-155. Zbl0243.54027
  6. [Ca2] R. Cauty, Sur le prolongement des fonctions continues à valeurs dans CW-complexes, C. R. Acad. Sci. Paris Sér. A 274 (1972), 35-37. Zbl0226.54011
  7. [Ca3] R. Cauty, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 133-271. Zbl0275.54015
  8. [Ca4] R. Cauty, Rétraction dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149. Zbl0292.54015
  9. [Ca5] R. Cauty, Sur les espaces d'applications dans les CW-complexes, Arch. Math. (Basel) 27 (1976), 306-311. Zbl0328.54009
  10. [Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126. Zbl0103.39101
  11. [CP] D. W. Curtis and D. S. Patching, Hyperspaces of direct limits of locally compact metric spaces, Topology Appl. 29 (1988), 55-60. Zbl0661.54015
  12. [CP] D. W. Curtis and R. M. Schori, Hyperspaces of polyhedra are Hilbert cubes, Fund. Math. 99 (1978), 189-197. Zbl0397.54036
  13. [CS1] D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, ibid. 101 (1978), 19-38. Zbl0409.54044
  14. [Gr] G. Gruenhage, Stratifiable spaces are M 2 , Topology Proc. 1 (1976), 221-226. Zbl0389.54019
  15. [Ju] H. J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108. Zbl0353.54016
  16. [Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. Zbl0061.40107
  17. [Mi] T. Mizokami, On CF families and hyperspaces of compact subsets, Topology Appl. 35 (1990), 75-92. Zbl0715.54018
  18. [MK] T. Mizokami and K. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. of Education 6 (1987), 1-14. 
  19. [Ta] U. Tašmetov, On the connectedness of hyperspaces, Dokl. Akad. Nauk SSSR 215 (1974), 286-288 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 502-504. Zbl0297.54009
  20. [Wo] M. Wojdysławski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192. Zbl0021.36001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.