The hyperspace of finite subsets of a stratifiable space

Robert Cauty; Bao-Lin Guo; Katsuro Sakai

Fundamenta Mathematicae (1995)

  • Volume: 147, Issue: 1, page 1-9
  • ISSN: 0016-2736

Abstract

top
It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.

How to cite

top

Cauty, Robert, Guo, Bao-Lin, and Sakai, Katsuro. "The hyperspace of finite subsets of a stratifiable space." Fundamenta Mathematicae 147.1 (1995): 1-9. <http://eudml.org/doc/212071>.

@article{Cauty1995,
abstract = {It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.},
author = {Cauty, Robert, Guo, Bao-Lin, Sakai, Katsuro},
journal = {Fundamenta Mathematicae},
keywords = {hyperspace; the Vietoris topology; stratifiable space; AR(S), ANR(S); 2-hyper-locally-connected; 2-hyper-locally connected stratifiable space; of finite subsets of a stratifiable space },
language = {eng},
number = {1},
pages = {1-9},
title = {The hyperspace of finite subsets of a stratifiable space},
url = {http://eudml.org/doc/212071},
volume = {147},
year = {1995},
}

TY - JOUR
AU - Cauty, Robert
AU - Guo, Bao-Lin
AU - Sakai, Katsuro
TI - The hyperspace of finite subsets of a stratifiable space
JO - Fundamenta Mathematicae
PY - 1995
VL - 147
IS - 1
SP - 1
EP - 9
AB - It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.
LA - eng
KW - hyperspace; the Vietoris topology; stratifiable space; AR(S), ANR(S); 2-hyper-locally-connected; 2-hyper-locally connected stratifiable space; of finite subsets of a stratifiable space
UR - http://eudml.org/doc/212071
ER -

References

top
  1. [Bo1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. Zbl0175.19802
  2. [Bo2] C. R. Borges, A study of absolute extensor spaces, ibid. 31 (1969), 609-617; corrigenda, ibid. 50 (1974), 29-30. 
  3. [Bo3] C. R. Borges, Connectivity of function spaces, Canad. J. Math. 23 (1971), 759-763. Zbl0207.43201
  4. [Ca1] R. Cauty, Une généralisation du théorème de Borsuk-Whitehead-Hanner aux espaces stratifiables, C. R. Acad. Sci. Paris Sér. A 275 (1972), 271-275. Zbl0238.54016
  5. [Ca2] R. Cauty, Produits symétriques de rétractes absolus de voisinage, ibid. 276 (1973), 359-361. Zbl0247.54012
  6. [Ca3] R. Cauty, Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149. Zbl0292.54015
  7. [Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126. Zbl0103.39101
  8. [CN] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to 0 -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. Zbl0587.54015
  9. [Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187-193. Zbl0151.30301
  10. [GS] B.-L. Guo and K. Sakai, Hyperspaces of CW-complexes, Fund. Math. 143 (1993), 23-40. Zbl0845.54008
  11. [Ja] J. W. Jaworowski, Symmetric products of ANR's, Math. Ann. 192 (1971), 173-176. Zbl0206.25002
  12. [Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. Zbl0061.40107
  13. [Mi] E. Michael, Topologies on spaces of subsets, ibid. 71 (1951), 152-182. 
  14. [MK] T. Mizokami and T. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. Educ. 6 (1987), 1-14. 
  15. [Ng] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 244-254. Zbl0573.54009
  16. [Sa] S. San-ou, A note on Ξ-product, J. Math. Soc. Japan 29 (1977), 281-285. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.