Lindelöf property and the iterated continuous function spaces

G. Sokolov

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 1, page 87-95
  • ISSN: 0016-2736

Abstract

top
We give an example of a compact space X whose iterated continuous function spaces C p ( X ) , C p C p ( X ) , . . . are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces C p ( X ) on compact scattered spaces with the ω 1 th derived set empty, improving some earlier results of Pol [12] in this direction.

How to cite

top

Sokolov, G.. "Lindelöf property and the iterated continuous function spaces." Fundamenta Mathematicae 143.1 (1993): 87-95. <http://eudml.org/doc/211994>.

@article{Sokolov1993,
abstract = {We give an example of a compact space X whose iterated continuous function spaces $C_\{p\}(X)$, $C_pC_p(X), ...$ are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces $C_\{p\}(X)$ on compact scattered spaces with the $ω_1$th derived set empty, improving some earlier results of Pol [12] in this direction.},
author = {Sokolov, G.},
journal = {Fundamenta Mathematicae},
keywords = {Lindelöf property},
language = {eng},
number = {1},
pages = {87-95},
title = {Lindelöf property and the iterated continuous function spaces},
url = {http://eudml.org/doc/211994},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Sokolov, G.
TI - Lindelöf property and the iterated continuous function spaces
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 1
SP - 87
EP - 95
AB - We give an example of a compact space X whose iterated continuous function spaces $C_{p}(X)$, $C_pC_p(X), ...$ are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces $C_{p}(X)$ on compact scattered spaces with the $ω_1$th derived set empty, improving some earlier results of Pol [12] in this direction.
LA - eng
KW - Lindelöf property
UR - http://eudml.org/doc/211994
ER -

References

top
  1. [1] A. V. Arkhangel'skiĭ, Topological Function Spaces, Moscow Univ. Press, 1989 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht 1992. 
  2. [2] K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into c 0 ( Γ ) , Bull. Acad. Polon. Sci. 32 (1984), 681-688. Zbl0571.54014
  3. [3] W. G. Fleissner, Applications of stationary sets in topology, in: Surveys in General Topology, Academic Press, 1980, 163-193. 
  4. [4] S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505-508 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1438-1442. 
  5. [5] S. P. Gul'ko, On properties of some function spaces, Dokl. Akad. Nauk SSSR 243 (1978), 839-842 (in Russian); English transl.: Soviet Math. Dokl. 19 (1978), 1420-1424. 
  6. [6] S. P. Gul'ko, On properties of function spaces, in: Seminar on General Topology, Moscow Univ. Press, 1981, 8-41 (in Russian). 
  7. [7] T. Jech, Set Theory, Academic Press, New York 1978. 
  8. [8] V. I. Malykhin, On the tightness and the Suslin number of exp X and of a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 496-499. 
  9. [9] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam 1984, 1045-1142. 
  10. [10] O. G. Okunev, On the weak topology of conjugate spaces and the t-equivalence relation, Mat. Zametki 46 (1989), 53-59 (in Russian). 
  11. [11] Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990. 
  12. [12] R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci. 25 (1977), 993-997. Zbl0389.54009
  13. [13] R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279-284. Zbl0424.46011
  14. [14] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa 1971. 
  15. [15] O. V. Sipachova, The structure of iterated function spaces in the topology of pointwise convergence for Eberlein compacta, Mat. Zametki 47 (1990), 91-99 (in Russian). 
  16. [16] G. A. Sokolov, On Lindelöf spaces of continuous functions, ibid. 36 (1986), 887-894 (in Russian). 
  17. [17] E. A. Reznichenko, Convex and compact subsets of function spaces and locally convex spaces, Ph.D. thesis, Moscow Univ., 1992 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.