Lindelöf property and the iterated continuous function spaces

G. Sokolov

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 1, page 87-95
  • ISSN: 0016-2736

Abstract

top
We give an example of a compact space X whose iterated continuous function spaces C p ( X ) , C p C p ( X ) , . . . are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces C p ( X ) on compact scattered spaces with the ω 1 th derived set empty, improving some earlier results of Pol [12] in this direction.

How to cite

top

Sokolov, G.. "Lindelöf property and the iterated continuous function spaces." Fundamenta Mathematicae 143.1 (1993): 87-95. <http://eudml.org/doc/211994>.

@article{Sokolov1993,
abstract = {We give an example of a compact space X whose iterated continuous function spaces $C_\{p\}(X)$, $C_pC_p(X), ...$ are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces $C_\{p\}(X)$ on compact scattered spaces with the $ω_1$th derived set empty, improving some earlier results of Pol [12] in this direction.},
author = {Sokolov, G.},
journal = {Fundamenta Mathematicae},
keywords = {Lindelöf property},
language = {eng},
number = {1},
pages = {87-95},
title = {Lindelöf property and the iterated continuous function spaces},
url = {http://eudml.org/doc/211994},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Sokolov, G.
TI - Lindelöf property and the iterated continuous function spaces
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 1
SP - 87
EP - 95
AB - We give an example of a compact space X whose iterated continuous function spaces $C_{p}(X)$, $C_pC_p(X), ...$ are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces $C_{p}(X)$ on compact scattered spaces with the $ω_1$th derived set empty, improving some earlier results of Pol [12] in this direction.
LA - eng
KW - Lindelöf property
UR - http://eudml.org/doc/211994
ER -

References

top
  1. [1] A. V. Arkhangel'skiĭ, Topological Function Spaces, Moscow Univ. Press, 1989 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht 1992. 
  2. [2] K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into c 0 ( Γ ) , Bull. Acad. Polon. Sci. 32 (1984), 681-688. Zbl0571.54014
  3. [3] W. G. Fleissner, Applications of stationary sets in topology, in: Surveys in General Topology, Academic Press, 1980, 163-193. 
  4. [4] S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505-508 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1438-1442. 
  5. [5] S. P. Gul'ko, On properties of some function spaces, Dokl. Akad. Nauk SSSR 243 (1978), 839-842 (in Russian); English transl.: Soviet Math. Dokl. 19 (1978), 1420-1424. 
  6. [6] S. P. Gul'ko, On properties of function spaces, in: Seminar on General Topology, Moscow Univ. Press, 1981, 8-41 (in Russian). 
  7. [7] T. Jech, Set Theory, Academic Press, New York 1978. 
  8. [8] V. I. Malykhin, On the tightness and the Suslin number of exp X and of a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 496-499. 
  9. [9] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam 1984, 1045-1142. 
  10. [10] O. G. Okunev, On the weak topology of conjugate spaces and the t-equivalence relation, Mat. Zametki 46 (1989), 53-59 (in Russian). 
  11. [11] Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990. 
  12. [12] R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci. 25 (1977), 993-997. Zbl0389.54009
  13. [13] R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279-284. Zbl0424.46011
  14. [14] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa 1971. 
  15. [15] O. V. Sipachova, The structure of iterated function spaces in the topology of pointwise convergence for Eberlein compacta, Mat. Zametki 47 (1990), 91-99 (in Russian). 
  16. [16] G. A. Sokolov, On Lindelöf spaces of continuous functions, ibid. 36 (1986), 887-894 (in Russian). 
  17. [17] E. A. Reznichenko, Convex and compact subsets of function spaces and locally convex spaces, Ph.D. thesis, Moscow Univ., 1992 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.