Ensembles absorbants pour les classes projectives

Robert Cauty

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 3, page 203-206
  • ISSN: 0016-2736

Abstract

top
We prove the existence, in the Hilbert space, of an absorbing set for the nth projective class.

How to cite

top

Cauty, Robert. "Ensembles absorbants pour les classes projectives." Fundamenta Mathematicae 143.3 (1993): 203-206. <http://eudml.org/doc/212004>.

@article{Cauty1993,
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {absorbing set; projective class},
language = {fre},
number = {3},
pages = {203-206},
title = {Ensembles absorbants pour les classes projectives},
url = {http://eudml.org/doc/212004},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Cauty, Robert
TI - Ensembles absorbants pour les classes projectives
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 3
SP - 203
EP - 206
LA - fre
KW - absorbing set; projective class
UR - http://eudml.org/doc/212004
ER -

References

top
  1. [1] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001
  2. [2] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  3. [3] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58. Zbl0770.54015
  4. [4] R. Cauty, Sur deux espaces de fonctions non dérivables, ibid. 141 (1992), 195-214. 
  5. [5] R. Cauty, Un exemple d'ensembles absorbants non équivalents, ibid. 140 (1991), 49-61. 
  6. [6] R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc. 337 (1993), 625-649. Zbl0820.57015
  7. [7] C. Kuratowski, Topologie, vol. I, 4ème édition, PWN, Warszawa, 1958. 
  8. [8] S. Mazurkiewicz, Über die Menge der differenzierbaren Funktionen, Fund. Math. 27 (1936), 244-249. Zbl62.0239.01
  9. [9] S. Mazurkiewicz, Eine projektive Menge der Klasse PCA im Funktionalraum, ibid. 28 (1937), 7-10. Zbl0015.29801

NotesEmbed ?

top

You must be logged in to post comments.