Sur deux espaces de fonctions non dérivables

Robert Cauty

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 3, page 195-214
  • ISSN: 0016-2736

Abstract

top
Let D (resp. D*) be the subspace of C = C([0,1], R) consisting of differentiable functions (resp. of functions differentiable at the one point at least). We give topological characterizations of the pairs (C, D) and (C, D*) and use them to give some examples of spaces homeomorphic to CDor to CD*.

How to cite

top

Cauty, Robert. "Sur deux espaces de fonctions non dérivables." Fundamenta Mathematicae 141.3 (1992): 195-214. <http://eudml.org/doc/211960>.

@article{Cauty1992,
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {differentiable functions},
language = {fre},
number = {3},
pages = {195-214},
title = {Sur deux espaces de fonctions non dérivables},
url = {http://eudml.org/doc/211960},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Cauty, Robert
TI - Sur deux espaces de fonctions non dérivables
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 195
EP - 214
LA - fre
KW - differentiable functions
UR - http://eudml.org/doc/211960
ER -

References

top
  1. [1] R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283-289. Zbl0203.25805
  2. [2] N. K. Bary, A Treatise on Trigonometric Series, Vol. I, Pergamon Press, Oxford 1964. Zbl0129.28002
  3. [3] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975. 
  4. [4] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  5. [5] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58. Zbl0770.54015
  6. [6] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de 1 , ibid. 139 (1991), 23-36. 
  7. [7] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to 0 -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. Zbl0587.54015
  8. [8] A. S. Kechris, Sets of everywhere singular functions, in: Recursion Theory Week, H.D. Ebbinghaus et al. (eds.), Lecture Notes in Math. 1141, Springer, Berlin 1985, 233-244. 
  9. [9] C. Kuratowski, Topologie I, 4e édition, PWN, Warszawa 1958. 
  10. [10] S. Mazur und L. Sternbach, Über die Borelschen Typen von linearen Mengen, Studia Math. 4 (1933), 48-53. Zbl0008.31503
  11. [11] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l 2 -manifolds, Fund. Math. 101 (1978), 93-110. Zbl0406.55003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.