Sur deux espaces de fonctions non dérivables

Robert Cauty

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 3, page 195-214
  • ISSN: 0016-2736

Abstract

top
Let D (resp. D*) be the subspace of C = C([0,1], R) consisting of differentiable functions (resp. of functions differentiable at the one point at least). We give topological characterizations of the pairs (C, D) and (C, D*) and use them to give some examples of spaces homeomorphic to CDor to CD*.

How to cite

top

Cauty, Robert. "Sur deux espaces de fonctions non dérivables." Fundamenta Mathematicae 141.3 (1992): 195-214. <http://eudml.org/doc/211960>.

@article{Cauty1992,
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {differentiable functions},
language = {fre},
number = {3},
pages = {195-214},
title = {Sur deux espaces de fonctions non dérivables},
url = {http://eudml.org/doc/211960},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Cauty, Robert
TI - Sur deux espaces de fonctions non dérivables
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 195
EP - 214
LA - fre
KW - differentiable functions
UR - http://eudml.org/doc/211960
ER -

References

top
  1. [1] R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283-289. Zbl0203.25805
  2. [2] N. K. Bary, A Treatise on Trigonometric Series, Vol. I, Pergamon Press, Oxford 1964. Zbl0129.28002
  3. [3] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975. 
  4. [4] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  5. [5] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58. Zbl0770.54015
  6. [6] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de 1 , ibid. 139 (1991), 23-36. 
  7. [7] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to 0 -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. Zbl0587.54015
  8. [8] A. S. Kechris, Sets of everywhere singular functions, in: Recursion Theory Week, H.D. Ebbinghaus et al. (eds.), Lecture Notes in Math. 1141, Springer, Berlin 1985, 233-244. 
  9. [9] C. Kuratowski, Topologie I, 4e édition, PWN, Warszawa 1958. 
  10. [10] S. Mazur und L. Sternbach, Über die Borelschen Typen von linearen Mengen, Studia Math. 4 (1933), 48-53. Zbl0008.31503
  11. [11] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l 2 -manifolds, Fund. Math. 101 (1978), 93-110. Zbl0406.55003

NotesEmbed ?

top

You must be logged in to post comments.