Universal spaces in the theory of transfinite dimension, I

Wojciech Olszewski

Fundamenta Mathematicae (1994)

  • Volume: 144, Issue: 3, page 243-258
  • ISSN: 0016-2736

Abstract

top
R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.

How to cite

top

Olszewski, Wojciech. "Universal spaces in the theory of transfinite dimension, I." Fundamenta Mathematicae 144.3 (1994): 243-258. <http://eudml.org/doc/212027>.

@article{Olszewski1994,
abstract = {R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.},
author = {Olszewski, Wojciech},
journal = {Fundamenta Mathematicae},
keywords = {transfinite dimension; universal space; separable metric spaces},
language = {eng},
number = {3},
pages = {243-258},
title = {Universal spaces in the theory of transfinite dimension, I},
url = {http://eudml.org/doc/212027},
volume = {144},
year = {1994},
}

TY - JOUR
AU - Olszewski, Wojciech
TI - Universal spaces in the theory of transfinite dimension, I
JO - Fundamenta Mathematicae
PY - 1994
VL - 144
IS - 3
SP - 243
EP - 258
AB - R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.
LA - eng
KW - transfinite dimension; universal space; separable metric spaces
UR - http://eudml.org/doc/212027
ER -

References

top
  1. [1] R. Engelking, Dimension Theory, PWN, Warszawa, 1978. 
  2. [2] R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161. 
  3. [3] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  4. [4] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 167-173. 
  5. [5] M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596. Zbl0175.19903
  6. [6] B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 73 (1968), 135-148. 
  7. [7] L. A. Luxemburg, On infinite-dimensional spaces with transfinite dimension, Dokl. Akad. Nauk SSSR 199 (1971), 1243-1246 (in Russian); English transl.: Soviet Math. Dokl. 12 (1971), 1272-1276. Zbl0235.54036
  8. [8] L. A. Luxemburg, On transfinite inductive dimensions, Dokl. Akad. Nauk SSSR 209 (1973), 295-298 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 388-393. Zbl0283.54019
  9. [9] L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597. 
  10. [10] L. A. Luxemburg, On compactifications of metric spaces with transfinite dimensions, Pacific J. Math. 101 (1982), 399-450. Zbl0451.54030
  11. [11] L. A. Luxemburg, On universal infinite-dimensional spaces, Fund. Math. 122 (1984), 129-147. Zbl0571.54029
  12. [12] A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221. 
  13. [13] R. Pol, On classification of weakly infinite-dimensional compacta, ibid. 116 (1983), 169-188. Zbl0571.54030
  14. [14] R. Pol, Countable-dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), 255-268. Zbl0636.54032
  15. [15] R. Pol, Questions in dimension theory, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, 279-291. 
  16. [16] Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. Ser. 2 21 (1962), 21-33. 
  17. [17] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. Zbl0055.41406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.