Cantor manifolds in the theory of transfinite dimension

Wojciech Olszewski

Fundamenta Mathematicae (1994)

  • Volume: 145, Issue: 1, page 39-64
  • ISSN: 0016-2736

Abstract

top
For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space Z α such that i n d Z α = α , and no closed subset L of Z α with ind L less than the predecessor of α is a partition in Z α . An α-dimensional Cantor Ind-manifold can be constructed similarly.

How to cite

top

Olszewski, Wojciech. "Cantor manifolds in the theory of transfinite dimension." Fundamenta Mathematicae 145.1 (1994): 39-64. <http://eudml.org/doc/212033>.

@article{Olszewski1994,
abstract = {For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space $Z_α$ such that $ind Z_α = α$, and no closed subset L of $Z_α$ with ind L less than the predecessor of α is a partition in $Z_α$. An α-dimensional Cantor Ind-manifold can be constructed similarly.},
author = {Olszewski, Wojciech},
journal = {Fundamenta Mathematicae},
keywords = {small inductive dimension; large inductive dimension; transfinite dimension; Cantor manifold},
language = {eng},
number = {1},
pages = {39-64},
title = {Cantor manifolds in the theory of transfinite dimension},
url = {http://eudml.org/doc/212033},
volume = {145},
year = {1994},
}

TY - JOUR
AU - Olszewski, Wojciech
TI - Cantor manifolds in the theory of transfinite dimension
JO - Fundamenta Mathematicae
PY - 1994
VL - 145
IS - 1
SP - 39
EP - 64
AB - For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space $Z_α$ such that $ind Z_α = α$, and no closed subset L of $Z_α$ with ind L less than the predecessor of α is a partition in $Z_α$. An α-dimensional Cantor Ind-manifold can be constructed similarly.
LA - eng
KW - small inductive dimension; large inductive dimension; transfinite dimension; Cantor manifold
UR - http://eudml.org/doc/212033
ER -

References

top
  1. [1] V. A. Chatyrko, Counterparts of Cantor manifolds for transfinite dimensions, Mat. Zametki 42 (1987), 115-119 (in Russian). Zbl0642.54028
  2. [2] R. Engelking, Dimension Theory, PWN, Warszawa, 1978. 
  3. [3] R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161. 
  4. [4] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  5. [5] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173. Zbl0167.51301
  6. [6] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 916-922. Zbl54.0620.05
  7. [7] M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596. Zbl0175.19903
  8. [8] B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 72 (1968), 135-148. 
  9. [9] L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597. 
  10. [10] W. Olszewski, Universal spaces in the theory of transfinite dimension, I, Fund. Math. 144 (1994), 243-258. Zbl0812.54041
  11. [11] A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221. 
  12. [12] Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21 (1962), 21-33. 
  13. [13] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195. Zbl0055.41406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.