The S1-CW decomposition of the geometric realization of a cyclic set

Zbigniew Fiedorowicz; Wojciech Gajda

Fundamenta Mathematicae (1994)

  • Volume: 145, Issue: 1, page 91-100
  • ISSN: 0016-2736

Abstract

top
We show that the geometric realization of a cyclic set has a natural, S 1 -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and S 1 -equivariant Borel homology of its geometric realization.

How to cite

top

Fiedorowicz, Zbigniew, and Gajda, Wojciech. "The S1-CW decomposition of the geometric realization of a cyclic set." Fundamenta Mathematicae 145.1 (1994): 91-100. <http://eudml.org/doc/212036>.

@article{Fiedorowicz1994,
abstract = {We show that the geometric realization of a cyclic set has a natural, $S^1$-equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and $S^1$-equivariant Borel homology of its geometric realization.},
author = {Fiedorowicz, Zbigniew, Gajda, Wojciech},
journal = {Fundamenta Mathematicae},
keywords = {cyclic set; $S^1-CW$ complex; equivariant homology theory; geometric realization of a cyclic set; -equivariant, cellular decomposition; cyclic homology of a cyclic space; -equivariant Borel homology},
language = {eng},
number = {1},
pages = {91-100},
title = {The S1-CW decomposition of the geometric realization of a cyclic set},
url = {http://eudml.org/doc/212036},
volume = {145},
year = {1994},
}

TY - JOUR
AU - Fiedorowicz, Zbigniew
AU - Gajda, Wojciech
TI - The S1-CW decomposition of the geometric realization of a cyclic set
JO - Fundamenta Mathematicae
PY - 1994
VL - 145
IS - 1
SP - 91
EP - 100
AB - We show that the geometric realization of a cyclic set has a natural, $S^1$-equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and $S^1$-equivariant Borel homology of its geometric realization.
LA - eng
KW - cyclic set; $S^1-CW$ complex; equivariant homology theory; geometric realization of a cyclic set; -equivariant, cellular decomposition; cyclic homology of a cyclic space; -equivariant Borel homology
UR - http://eudml.org/doc/212036
ER -

References

top
  1. [1] M. Bökstedt, W. C. Hsiang and I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993), 465-539. Zbl0804.55004
  2. [2] K. Brown, Cohomology of Groups, Graduate Texts in Math. 87, Springer, 1982. 
  3. [3] D. Burghelea and Z. Fiedorowicz, Cyclic homology and algebraic K-theory of spaces - II, Topology 25 (1986), 303-317. Zbl0639.55003
  4. [4] A. Connes, Cohomologie cyclique et foncteurs E x t n , C. R. Acad. Sci. Paris 296 (1983), 953-958. 
  5. [5] T. tom Dieck, Transformation Groups, de Gruyter, 1987. 
  6. [6] G. Dunn, Dihedral and quaternionic homology and mapping spaces, K-Theory 3 (1989), 141-161. Zbl0702.55014
  7. [7] G. Dunn and Z. Fiedorowicz, A classifying space construction for cyclic spaces, Math. Ann., to appear. 
  8. [8] Z. Fiedorowicz and J.-L. Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), 57-87. Zbl0755.18005
  9. [9] T. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), 187-215. Zbl0569.16021
  10. [10] T. Kawasaki, Cohomology of twisted projective spaces and lens complexes, Math. Ann. 206 (1973), 243-248. Zbl0268.57005
  11. [11] L. G. Lewis, Jr., The RO(G)-graded equivariant ordinary cohomology of complex projective spaces with linear Z p -actions, in: Lecture Notes in Math. 1361, Springer, 1988, 53-123. 
  12. [12] L. G. Lewis, Jr., J. P. May and J. McClure, Ordinary RO(G)-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 208-212. Zbl0477.55009
  13. [13] L. G. Lewis, Jr., J. P. May and M. Steinberger, Equivariant Stable Homotopy Theory, Lecture Notes in Math. 1213, Springer, 1986. 
  14. [14] J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer, 1972. 
  15. [15] G. Segal, Classifying spaces and spectral sequences, Publ. IHES 34 (1968), 105-112. Zbl0199.26404
  16. [16] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-314. Zbl0284.55016
  17. [17] J. Słomińska, Equivariant singular cohomology of unitary representation spheres for finite groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 627-632. Zbl0503.55004
  18. [18] S. J. Willson, Equivariant homology theories on G-complexes, Trans. Amer. Math. Soc. 212 (1975), 155-171. Zbl0308.55002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.