On partitions of lines and space
Paul Erdös; Steve Jackson; R. Mauldin
Fundamenta Mathematicae (1994)
- Volume: 145, Issue: 2, page 101-119
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topErdös, Paul, Jackson, Steve, and Mauldin, R.. "On partitions of lines and space." Fundamenta Mathematicae 145.2 (1994): 101-119. <http://eudml.org/doc/212037>.
@article{Erdös1994,
abstract = {We consider a set, L, of lines in $ℝ^n$ and a partition of L into some number of sets: $L = L_1∪...∪ L_p$. We seek a corresponding partition $ℝ^n = S_1 ∪...∪ S_p$ such that each line l in $L_i$ meets the set $S_i$ in a set whose cardinality has some fixed bound, $ω_τ$. We determine equivalences between the bounds on the size of the continuum, $2^ω ≤ ω_θ$, and some relationships between p, $ω_τ$ and $ω_θ$.},
author = {Erdös, Paul, Jackson, Steve, Mauldin, R.},
journal = {Fundamenta Mathematicae},
keywords = {transfinite recursion; value of continuum; partitions of lines in Euclidean space; axiom of determinateness},
language = {eng},
number = {2},
pages = {101-119},
title = {On partitions of lines and space},
url = {http://eudml.org/doc/212037},
volume = {145},
year = {1994},
}
TY - JOUR
AU - Erdös, Paul
AU - Jackson, Steve
AU - Mauldin, R.
TI - On partitions of lines and space
JO - Fundamenta Mathematicae
PY - 1994
VL - 145
IS - 2
SP - 101
EP - 119
AB - We consider a set, L, of lines in $ℝ^n$ and a partition of L into some number of sets: $L = L_1∪...∪ L_p$. We seek a corresponding partition $ℝ^n = S_1 ∪...∪ S_p$ such that each line l in $L_i$ meets the set $S_i$ in a set whose cardinality has some fixed bound, $ω_τ$. We determine equivalences between the bounds on the size of the continuum, $2^ω ≤ ω_θ$, and some relationships between p, $ω_τ$ and $ω_θ$.
LA - eng
KW - transfinite recursion; value of continuum; partitions of lines in Euclidean space; axiom of determinateness
UR - http://eudml.org/doc/212037
ER -
References
top- [B] F. Bagemihl, A proposition of elementary plane geometry that implies the continuum hypothesis, Z. Math. Logik Grundlag. Math. 7 (1961), 77-79. Zbl0121.01604
- [BH] G. Bergman and E. Hrushovski, Identities of cofinal sublattices, Order 2 (1985), 173-191. Zbl0579.06010
- [D1] R. Davies, On a problem of Erdős concerning decompositions of the plane, Proc. Cambridge Philos. Soc. 59 (1963), 33-36. Zbl0121.25702
- [D2] R. Davies, On a denumerable partition problem of Erdős, ibid., 501-502. Zbl0121.01602
- [Er] P. Erdős, Some remarks on set theory. IV, Michigan Math. J. 2 (1953-54), 169-173.
- [EGH] P. Erdős, F. Galvin and A. Hajnal, On set-systems having large chromatic number and not containing prescribed subsystems, in: Infinite and Finite Sets (Colloq., Keszthely; dedicated to P. Erdős on his 60th birthday, 1973), Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, 425-513.
- [EH] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta. Math. Acad. Sci. Hungar. 17 (1966), 61-99. Zbl0151.33701
- [GG] F. Galvin and G. Gruenhage, A geometric equivalent of the continuum hypothesis, unpublished manuscript.
- [J1] S. Jackson, A new proof of the strong partition relation on , Trans. Amer. Math. Soc. 320 (1990), 737-745.
- [J2] S. Jackson, A computation of , to appear.
- [Ku] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17. Zbl0044.27302
- [S1] W. Sierpiński, Sur quelques propositions concernant la puissance du continu, ibid., 1-13. Zbl0044.27301
- [S2] W. Sierpiński, Hypothèse du continu, Warszawa, 1934. Zbl60.0035.01
- [Si] R. Sikorski, A characterization of alephs, Fund. Math. 38 (1951), 18-22. Zbl0044.27303
- [Sm1] J. Simms, Sierpiński's theorem, Simon Stevin 65 (1991), 69-163. Zbl0726.01013
- [Sm2] J. Simms, Is weakly inaccessible?, to appear.
- [To] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. Zbl0658.03028
- [W] W. H. Woodin, Some consistency results in ZFC using AD, in: Cabal Seminar 79-81, Lecture Notes in Math. 1019, Springer, 1983, 172-198.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.