Cantor's Continuum Hypothesis: consequences in mathematics and its foundations

Alessandro Andretta

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2018)

  • Volume: 3, Issue: 3, page 237-252
  • ISSN: 2499-751X

Abstract

top
We give an overview of the continuum hypothesis, of its impact on mathematics, and on the foundations of set theory.

How to cite

top

Andretta, Alessandro. "Cantor's Continuum Hypothesis: consequences in mathematics and its foundations." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 3.3 (2018): 237-252. <http://eudml.org/doc/294073>.

@article{Andretta2018,
abstract = {We give an overview of the continuum hypothesis, of its impact on mathematics, and on the foundations of set theory.},
author = {Andretta, Alessandro},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {12},
number = {3},
pages = {237-252},
publisher = {Unione Matematica Italiana},
title = {Cantor's Continuum Hypothesis: consequences in mathematics and its foundations},
url = {http://eudml.org/doc/294073},
volume = {3},
year = {2018},
}

TY - JOUR
AU - Andretta, Alessandro
TI - Cantor's Continuum Hypothesis: consequences in mathematics and its foundations
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2018/12//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 237
EP - 252
AB - We give an overview of the continuum hypothesis, of its impact on mathematics, and on the foundations of set theory.
LA - eng
UR - http://eudml.org/doc/294073
ER -

References

top
  1. ANDRETTA, ALESSANDRO. “Absoluteness theorems in set theory. I”. In: Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8) 6.1 (2003), pp. 57-84. ISSN: 0392-4033. Zbl1194.03040MR1982348
  2. ANDRETTA, ALESSANDRO. “Absoluteness theorems in set theory. II”. In: Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8) 6.3 (2003), pp. 489-507. ISSN: 0392-4033. Zbl1194.03041MR2043610
  3. CANTOR, GEORG. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Ed. by Ernst Zermelo. Springer Collected Works in Mathematics. Springer-Verlag, 1980. Zbl0441.04001MR616083
  4. CHOW, TIMOTHY Y.. “A beginner's guide to forcing”. In: Communicating mathematics. Vol. 479. Contemp. Math.Amer. Math. Soc., Providence, RI, 2009, pp. 25-40. url: https://doi.org/10.1090/conm/479/09340. Zbl1183.03037MR2513355DOI10.1090/conm/479/09340
  5. CICHONÂ, JACEK and MORAYNE, MICHAŁ. “On differentiability of Peano type functions. III”. In: Proc. Amer. Math. Soc.92.3 (1984), pp. 432-438. ISSN: 0002-9939. doi: 10.2307/2044851. url: http://dx.doi.org/10.2307/2044851. Zbl0625.26011
  6. COSKEY, SAMUEL and FARAH, ILIJAS. “Automorphisms of corona algebras, and group cohomology”. In: Trans. Amer. Math. Soc.366.7 (2014), pp. 3611-3630. ISSN: 0002-9947. url: https://doi.org/10.1090/S0002-9947-2014-06146-1. Zbl1303.46052MR3192609DOI10.1090/S0002-9947-2014-06146-1
  7. DALES, H. G. and WOODIN, W. H.. An introduction to independence for analysts. Vol. 115. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1987, pp. xiv+241. isbn: 0-521-33996-0. Zbl0629.03030MR942216DOI10.1017/CBO9780511662256
  8. DAUBEN, JOSEPH W.. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton University Press, 1990. Zbl0858.01028MR1082146
  9. DAVIES, ROY O.. “Partitioning the plane into denumberably many sets without repeated distances”. In: Proc. Cambridge Philos. Soc.72 (1972), pp. 179-183. Zbl0321.04005MR294592DOI10.1017/s0305004100046983
  10. DAVIES, ROY O.. “Representation of functions of two variables as sums of rectangular functions. I”. In: Fund. Math.85.2 (1974), pp. 177-183. ISSN: 0016-2736. Zbl0295.26014MR346108DOI10.4064/fm-85-2-177-183
  11. ALEXANDRE DIEUDONNÉ, JEAN. A panorama of pure mathematics. Vol. 97. Pure and Applied Mathematics. tradotto dal francese da I. G. Macdonald. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982, pp. x+289. ISBN: 0-12-215560-2. MR662823
  12. EKLOF, PAUL C. and MEKLER, ALAN H.. Almost free modules. Revised. Vol. 65. North-Holland Mathematical Library. Set-theoretic methods. NorthHolland Publishing Co., Amsterdam, 2002, pp. xxii+597. isbn: 0-444-50492-3. Zbl1054.20037MR1914985
  13. ERDŐS, P., JACKSON, STEVE, and DANIEL MAULDIN, R.. “On partitions of lines and space”. In: Fund. Math.145.2 (1994), pp. 101-119. ISSN: 0016-2736. Zbl0809.04004MR1297399
  14. ERDŐS, PAUL. “An interpolation problem associated with the continuum hypothesis”. In: Michigan Math. J.11 (1964), pp. 9-10. ISSN: 0026-2285. MR168482
  15. ERDŐS, PAUL and KAKUTANI, S.. “On non-denumerable graphs”. In: Bull. Amer. Math. Soc.49 (1943), pp. 457-461. issn: 0002-9904. Zbl0063.01275MR8136DOI10.1090/S0002-9904-1943-07954-2
  16. FARAH, ILIJAS. “All automorphisms of the Calkin algebra are inner”. In: Ann. of Math. (2) 173.2 (2011), pp. 619-661. ISSN: 0003-486X. url: https://doi.org/10.4007/annals.2011.173.2.1. Zbl1250.03094MR2776359DOI10.4007/annals.2011.173.2.1
  17. FARAH, ILIJAS et al. “A simple C*-algebra with nite nuclear dimension which is not Ƶ-stable”. In: Münster J. Math.7.2 (2014), pp. 515-528. ISSN: 1867-5778. Zbl1367.46051MR3426228
  18. FOLLAND, GERALD B.. Real analysis. Second. Pure and Applied Mathematics (New York). Modern techniques and their applications, A Wiley-Interscience Publication. New York: John Wiley & Sons Inc., 1999, pp. xvi+386. ISBN: 0-47131716-0. Zbl0924.28001MR1681462
  19. DOV GABBAY, AKIHIRO KANAMORI and JOHN WOODS, eds. Handbook of the History of Logic. Sets and extensions in the twentieth century. Vol. 6. Elsevier/North-Holland, 2012. Zbl1236.03005MR3295936DOI10.1016/B978-0-444-51621-3.50001-3
  20. GINSBURG, J. and LINEK, V.. “A space-filling complete graph”. In: Ars Combin.58 (2001), pp. 97-109. ISSN: 0381-7032. Zbl1065.05035MR1820190
  21. HINDMAN, NEIL and STRAUSS, DONA. Algebra in the Stone-Cech compactification. De Gruyter Textbook. Theory and applications, Second revised and extended edition [of MR1642231]. Walter de Gruyter & Co., Berlin, 2012, pp. xviii+591. ISBN: 978-3-11-025623-9. Zbl1241.22001MR2893605
  22. HYKEL HOSNI, GABRIELE LOLLI and CARLO TOFFALORI, eds. Le direzioni della ricerca logica in Italia. Edizioni Scuola Normale, 2015. ISBN: 978-88-7642-570-7. 
  23. JECH, THOMAS. Set theory. Springer Monographs in Mathematics. The third millennium edition, revised and expanded. Berlin: Springer-Verlag, 2003, pp. xiv+769. ISBN: 3-540-44085-2. MR1940513
  24. KOMJÁTH, PÉTER. “Three clouds may cover the plane”. In: Ann. Pure Appl. Logic109.1-2 (2001). Dedicated to Petr Vopenka, pp. 71-75. ISSN: 0168-0072. DOI: 10.1016/S0168-0072(01)00042-2. URL: http://dx.doi.org/10.1016/S0168-0072(01)00042-2. MR1835239DOI10.1016/S0168-0072(01)00042-2
  25. KRAMER, LINUS et al. “Asymptotic cones of nitely presented groups”. In: Adv. Math.193.1 (2005), pp. 142-173. ISSN: 0001-8708. URL: https://doi.org/10.1016/j.aim.2004.04.012. Zbl1139.22010MR2132762DOI10.1016/j.aim.2004.04.012
  26. KUMAR, ASHUTOSH and SHELAH, SAHARON. “On a question about families of entire functions”. In: Fundamenta Mathematic239 (2017), pp. 279-288. Zbl1390.03044MR3691208DOI10.4064/fm252-3-2017
  27. KUNEN, KENNETH. “Partitioning Euclidean space”. In: Math. Proc. Cambridge Philos. Soc.102.3 (1987), pp. 379-383. ISSN: 0305-0041. DOI: 10.1017/S0305004100067426. URL: http://dx.doi.org/10.1017/S0305004100067426. Zbl0657.51009
  28. MONASTYRSKY, MICHAEL. Modern mathematics in the light of the Fields medals. Translate from the 1991 original text in russian by Roger Cooke and revised by the author, with an introduction by Freeman Dyson. A K Peters, Ltd., Wellesley, MA, 1997, pp. xvi+160. ISBN: 1-56881-065-2. MR1427488
  29. MORAYNE, MICHAŁ. “On differentiability of Peano type functions. I, II”. In: Colloq. Math.53.1 (1987), pp. 129-132, 133-135. ISSN: 0010-1354. Zbl0625.26009MR890849DOI10.4064/cm-53-1-129-132
  30. RITTBERG, COLIN J.. “How Woodin changed his mind: new thoughts on the continuum hypothesis”. In: Arch. Hist. Exact Sci.69.2 (2015), pp. 125-151. ISSN: 0003-9519. url: https://doi.org/10.1007/s00407-014-0142-8. Zbl1330.03008MR3314519DOI10.1007/s00407-014-0142-8
  31. SCHMERL, JAMES H.. “How many clouds cover the plane?” In: Fund. Math.177.3 (2003), pp. 209-211. ISSN: 0016-2736. doi: 10.4064/fm177-3-2. url: http://dx.doi.org/10.4064/fm177-3-2. Zbl1020.03047MR1992240DOI10.4064/fm177-3-2
  32. SCHMERL, JAMES H.. “Covering the plane with sprays”. In: Fund. Math.208.3 (2010), pp. 263-272. issn: 0016-2736. url: https://doi.org/10.4064/fm208-3-3. Zbl1204.03047MR2650984DOI10.4064/fm208-3-3
  33. SIERPIŃSKI, WACŁAW. Hypothèse du continu. 2nd ed. Chelsea Publishing Company, New York, N. Y., 1956, pp. xvii+274. 
  34. SIMMS, JOHN C.. “Sierpiński's theorem”. In: Simon Stevin65.1-2 (1991), pp. 69-163. ISSN: 0037-5454. MR1114284
  35. SMORYŃSKI, CRAIG. Logical number theory. I. Universitext. An introduction. Berlin: Springer-Verlag, 1991, pp. x+405. isbn: 3-540-52236-0. doi: 10.1007/978-3-642-75462-3. url: http://dx.doi.org/10.1007/978-3-642-75462-3. 
  36. TODORCEVIC, STEVO. “Biorthogonal systems and quotient spaces via Baire category methods”. In: Math. Ann.335.3 (2006), pp. 687-715. issn: 0025-5831. url: https://doi.org/10.1007/s00208-006-0762-7. Zbl1112.46015MR2221128DOI10.1007/s00208-006-0762-7
  37. DE LA VEGA, RAMIRO. “Decompositions of the plane and the size of the continuum”. In: Fund. Math.203.1 (2009), pp. 65-74. issn: 0016-2736. url: https://doi.org/10.4064/fm203-1-6. Zbl1168.03038MR2491783DOI10.4064/fm203-1-6
  38. HUGH WOODIN, W.. The axiom of determinacy, forcing axioms, and the nonstationary ideal. Vol. 1. de Gruyter Series in Logic and its Applications. Berlin: Walter de Gruyter; WOODIN, Hugh. “The continuum hypothesis. I”. In: Notices Amer. Math. Soc.48.6 (2001), pp. 567-576. ISSN: 0002-9920. MR1713438DOI10.1515/9783110804737
  39. HUGH WOODIN, W.. “The continuum hypothesis. II”. In: Notices Amer. Math. Soc.48.7 (2001), pp. 681-690. ISSN: 0002-9920. Zbl1047.03041MR1842471
  40. HUGH WOODIN, W.. “In search of Ultimate-L: the 19th Midrasha Mathematicae Lectures”. In: Bull. Symb. Log.23.1 (2017), pp. 1-109. ISSN: 1079-8986. url: https://doi.org/10.1017/bsl.2016.34. Zbl1420.03134MR3632568DOI10.1017/bsl.2016.34
  41. ZOLI, ENRICO. “Another algebraic equivalent of the continuum hypothesis”. In: Tatra Mt. Math. Publ.34. part II (2006), pp. 223-228. issn: 1210-3195. Zbl1135.03019MR2284620

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.