Cantor's Continuum Hypothesis: consequences in mathematics and its foundations
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2018)
- Volume: 3, Issue: 3, page 237-252
- ISSN: 2499-751X
Access Full Article
topAbstract
topHow to cite
topAndretta, Alessandro. "Cantor's Continuum Hypothesis: consequences in mathematics and its foundations." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 3.3 (2018): 237-252. <http://eudml.org/doc/294073>.
@article{Andretta2018,
abstract = {We give an overview of the continuum hypothesis, of its impact on mathematics, and on the foundations of set theory.},
author = {Andretta, Alessandro},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {12},
number = {3},
pages = {237-252},
publisher = {Unione Matematica Italiana},
title = {Cantor's Continuum Hypothesis: consequences in mathematics and its foundations},
url = {http://eudml.org/doc/294073},
volume = {3},
year = {2018},
}
TY - JOUR
AU - Andretta, Alessandro
TI - Cantor's Continuum Hypothesis: consequences in mathematics and its foundations
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2018/12//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 237
EP - 252
AB - We give an overview of the continuum hypothesis, of its impact on mathematics, and on the foundations of set theory.
LA - eng
UR - http://eudml.org/doc/294073
ER -
References
top- ANDRETTA, ALESSANDRO. “Absoluteness theorems in set theory. I”. In: Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8) 6.1 (2003), pp. 57-84. ISSN: 0392-4033. Zbl1194.03040MR1982348
- ANDRETTA, ALESSANDRO. “Absoluteness theorems in set theory. II”. In: Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8) 6.3 (2003), pp. 489-507. ISSN: 0392-4033. Zbl1194.03041MR2043610
- CANTOR, GEORG. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Ed. by Ernst Zermelo. Springer Collected Works in Mathematics. Springer-Verlag, 1980. Zbl0441.04001MR616083
- CHOW, TIMOTHY Y.. “A beginner's guide to forcing”. In: Communicating mathematics. Vol. 479. Contemp. Math.Amer. Math. Soc., Providence, RI, 2009, pp. 25-40. url: https://doi.org/10.1090/conm/479/09340. Zbl1183.03037MR2513355DOI10.1090/conm/479/09340
- CICHONÂ, JACEK and MORAYNE, MICHAŁ. “On differentiability of Peano type functions. III”. In: Proc. Amer. Math. Soc.92.3 (1984), pp. 432-438. ISSN: 0002-9939. doi: 10.2307/2044851. url: http://dx.doi.org/10.2307/2044851. Zbl0625.26011
- COSKEY, SAMUEL and FARAH, ILIJAS. “Automorphisms of corona algebras, and group cohomology”. In: Trans. Amer. Math. Soc.366.7 (2014), pp. 3611-3630. ISSN: 0002-9947. url: https://doi.org/10.1090/S0002-9947-2014-06146-1. Zbl1303.46052MR3192609DOI10.1090/S0002-9947-2014-06146-1
- DALES, H. G. and WOODIN, W. H.. An introduction to independence for analysts. Vol. 115. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1987, pp. xiv+241. isbn: 0-521-33996-0. Zbl0629.03030MR942216DOI10.1017/CBO9780511662256
- DAUBEN, JOSEPH W.. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton University Press, 1990. Zbl0858.01028MR1082146
- DAVIES, ROY O.. “Partitioning the plane into denumberably many sets without repeated distances”. In: Proc. Cambridge Philos. Soc.72 (1972), pp. 179-183. Zbl0321.04005MR294592DOI10.1017/s0305004100046983
- DAVIES, ROY O.. “Representation of functions of two variables as sums of rectangular functions. I”. In: Fund. Math.85.2 (1974), pp. 177-183. ISSN: 0016-2736. Zbl0295.26014MR346108DOI10.4064/fm-85-2-177-183
- ALEXANDRE DIEUDONNÉ, JEAN. A panorama of pure mathematics. Vol. 97. Pure and Applied Mathematics. tradotto dal francese da I. G. Macdonald. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982, pp. x+289. ISBN: 0-12-215560-2. MR662823
- EKLOF, PAUL C. and MEKLER, ALAN H.. Almost free modules. Revised. Vol. 65. North-Holland Mathematical Library. Set-theoretic methods. NorthHolland Publishing Co., Amsterdam, 2002, pp. xxii+597. isbn: 0-444-50492-3. Zbl1054.20037MR1914985
- ERDŐS, P., JACKSON, STEVE, and DANIEL MAULDIN, R.. “On partitions of lines and space”. In: Fund. Math.145.2 (1994), pp. 101-119. ISSN: 0016-2736. Zbl0809.04004MR1297399
- ERDŐS, PAUL. “An interpolation problem associated with the continuum hypothesis”. In: Michigan Math. J.11 (1964), pp. 9-10. ISSN: 0026-2285. MR168482
- ERDŐS, PAUL and KAKUTANI, S.. “On non-denumerable graphs”. In: Bull. Amer. Math. Soc.49 (1943), pp. 457-461. issn: 0002-9904. Zbl0063.01275MR8136DOI10.1090/S0002-9904-1943-07954-2
- FARAH, ILIJAS. “All automorphisms of the Calkin algebra are inner”. In: Ann. of Math. (2) 173.2 (2011), pp. 619-661. ISSN: 0003-486X. url: https://doi.org/10.4007/annals.2011.173.2.1. Zbl1250.03094MR2776359DOI10.4007/annals.2011.173.2.1
- FARAH, ILIJAS et al. “A simple C*-algebra with nite nuclear dimension which is not Ƶ-stable”. In: Münster J. Math.7.2 (2014), pp. 515-528. ISSN: 1867-5778. Zbl1367.46051MR3426228
- FOLLAND, GERALD B.. Real analysis. Second. Pure and Applied Mathematics (New York). Modern techniques and their applications, A Wiley-Interscience Publication. New York: John Wiley & Sons Inc., 1999, pp. xvi+386. ISBN: 0-47131716-0. Zbl0924.28001MR1681462
- DOV GABBAY, AKIHIRO KANAMORI and JOHN WOODS, eds. Handbook of the History of Logic. Sets and extensions in the twentieth century. Vol. 6. Elsevier/North-Holland, 2012. Zbl1236.03005MR3295936DOI10.1016/B978-0-444-51621-3.50001-3
- GINSBURG, J. and LINEK, V.. “A space-filling complete graph”. In: Ars Combin.58 (2001), pp. 97-109. ISSN: 0381-7032. Zbl1065.05035MR1820190
- HINDMAN, NEIL and STRAUSS, DONA. Algebra in the Stone-Cech compactification. De Gruyter Textbook. Theory and applications, Second revised and extended edition [of MR1642231]. Walter de Gruyter & Co., Berlin, 2012, pp. xviii+591. ISBN: 978-3-11-025623-9. Zbl1241.22001MR2893605
- HYKEL HOSNI, GABRIELE LOLLI and CARLO TOFFALORI, eds. Le direzioni della ricerca logica in Italia. Edizioni Scuola Normale, 2015. ISBN: 978-88-7642-570-7.
- JECH, THOMAS. Set theory. Springer Monographs in Mathematics. The third millennium edition, revised and expanded. Berlin: Springer-Verlag, 2003, pp. xiv+769. ISBN: 3-540-44085-2. MR1940513
- KOMJÁTH, PÉTER. “Three clouds may cover the plane”. In: Ann. Pure Appl. Logic109.1-2 (2001). Dedicated to Petr Vopenka, pp. 71-75. ISSN: 0168-0072. DOI: 10.1016/S0168-0072(01)00042-2. URL: http://dx.doi.org/10.1016/S0168-0072(01)00042-2. MR1835239DOI10.1016/S0168-0072(01)00042-2
- KRAMER, LINUS et al. “Asymptotic cones of nitely presented groups”. In: Adv. Math.193.1 (2005), pp. 142-173. ISSN: 0001-8708. URL: https://doi.org/10.1016/j.aim.2004.04.012. Zbl1139.22010MR2132762DOI10.1016/j.aim.2004.04.012
- KUMAR, ASHUTOSH and SHELAH, SAHARON. “On a question about families of entire functions”. In: Fundamenta Mathematic239 (2017), pp. 279-288. Zbl1390.03044MR3691208DOI10.4064/fm252-3-2017
- KUNEN, KENNETH. “Partitioning Euclidean space”. In: Math. Proc. Cambridge Philos. Soc.102.3 (1987), pp. 379-383. ISSN: 0305-0041. DOI: 10.1017/S0305004100067426. URL: http://dx.doi.org/10.1017/S0305004100067426. Zbl0657.51009
- MONASTYRSKY, MICHAEL. Modern mathematics in the light of the Fields medals. Translate from the 1991 original text in russian by Roger Cooke and revised by the author, with an introduction by Freeman Dyson. A K Peters, Ltd., Wellesley, MA, 1997, pp. xvi+160. ISBN: 1-56881-065-2. MR1427488
- MORAYNE, MICHAŁ. “On differentiability of Peano type functions. I, II”. In: Colloq. Math.53.1 (1987), pp. 129-132, 133-135. ISSN: 0010-1354. Zbl0625.26009MR890849DOI10.4064/cm-53-1-129-132
- RITTBERG, COLIN J.. “How Woodin changed his mind: new thoughts on the continuum hypothesis”. In: Arch. Hist. Exact Sci.69.2 (2015), pp. 125-151. ISSN: 0003-9519. url: https://doi.org/10.1007/s00407-014-0142-8. Zbl1330.03008MR3314519DOI10.1007/s00407-014-0142-8
- SCHMERL, JAMES H.. “How many clouds cover the plane?” In: Fund. Math.177.3 (2003), pp. 209-211. ISSN: 0016-2736. doi: 10.4064/fm177-3-2. url: http://dx.doi.org/10.4064/fm177-3-2. Zbl1020.03047MR1992240DOI10.4064/fm177-3-2
- SCHMERL, JAMES H.. “Covering the plane with sprays”. In: Fund. Math.208.3 (2010), pp. 263-272. issn: 0016-2736. url: https://doi.org/10.4064/fm208-3-3. Zbl1204.03047MR2650984DOI10.4064/fm208-3-3
- SIERPIŃSKI, WACŁAW. Hypothèse du continu. 2nd ed. Chelsea Publishing Company, New York, N. Y., 1956, pp. xvii+274.
- SIMMS, JOHN C.. “Sierpiński's theorem”. In: Simon Stevin65.1-2 (1991), pp. 69-163. ISSN: 0037-5454. MR1114284
- SMORYŃSKI, CRAIG. Logical number theory. I. Universitext. An introduction. Berlin: Springer-Verlag, 1991, pp. x+405. isbn: 3-540-52236-0. doi: 10.1007/978-3-642-75462-3. url: http://dx.doi.org/10.1007/978-3-642-75462-3.
- TODORCEVIC, STEVO. “Biorthogonal systems and quotient spaces via Baire category methods”. In: Math. Ann.335.3 (2006), pp. 687-715. issn: 0025-5831. url: https://doi.org/10.1007/s00208-006-0762-7. Zbl1112.46015MR2221128DOI10.1007/s00208-006-0762-7
- DE LA VEGA, RAMIRO. “Decompositions of the plane and the size of the continuum”. In: Fund. Math.203.1 (2009), pp. 65-74. issn: 0016-2736. url: https://doi.org/10.4064/fm203-1-6. Zbl1168.03038MR2491783DOI10.4064/fm203-1-6
- HUGH WOODIN, W.. The axiom of determinacy, forcing axioms, and the nonstationary ideal. Vol. 1. de Gruyter Series in Logic and its Applications. Berlin: Walter de Gruyter; WOODIN, Hugh. “The continuum hypothesis. I”. In: Notices Amer. Math. Soc.48.6 (2001), pp. 567-576. ISSN: 0002-9920. MR1713438DOI10.1515/9783110804737
- HUGH WOODIN, W.. “The continuum hypothesis. II”. In: Notices Amer. Math. Soc.48.7 (2001), pp. 681-690. ISSN: 0002-9920. Zbl1047.03041MR1842471
- HUGH WOODIN, W.. “In search of Ultimate-L: the 19th Midrasha Mathematicae Lectures”. In: Bull. Symb. Log.23.1 (2017), pp. 1-109. ISSN: 1079-8986. url: https://doi.org/10.1017/bsl.2016.34. Zbl1420.03134MR3632568DOI10.1017/bsl.2016.34
- ZOLI, ENRICO. “Another algebraic equivalent of the continuum hypothesis”. In: Tatra Mt. Math. Publ.34. part II (2006), pp. 223-228. issn: 1210-3195. Zbl1135.03019MR2284620
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.