Classical-type characterizations of non-metrizable ANE(n)-spaces

Valentin Gutev; Vesko Valov

Fundamenta Mathematicae (1994)

  • Volume: 145, Issue: 3, page 243-259
  • ISSN: 0016-2736

Abstract

top
The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is L C n - 1 C n - 1 (resp., L C n - 1 ) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.

How to cite

top

Gutev, Valentin, and Valov, Vesko. "Classical-type characterizations of non-metrizable ANE(n)-spaces." Fundamenta Mathematicae 145.3 (1994): 243-259. <http://eudml.org/doc/212045>.

@article{Gutev1994,
abstract = {The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is $LC^\{n-1\} & C^\{n-1\}$ (resp., $LC^\{n-1\}$) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.},
author = {Gutev, Valentin, Valov, Vesko},
journal = {Fundamenta Mathematicae},
keywords = {absolute (neighborhood) extensor in dimension n; n-regular base; n-regular extension operator; Kuratowski-Dugundji theorem; extensors},
language = {eng},
number = {3},
pages = {243-259},
title = {Classical-type characterizations of non-metrizable ANE(n)-spaces},
url = {http://eudml.org/doc/212045},
volume = {145},
year = {1994},
}

TY - JOUR
AU - Gutev, Valentin
AU - Valov, Vesko
TI - Classical-type characterizations of non-metrizable ANE(n)-spaces
JO - Fundamenta Mathematicae
PY - 1994
VL - 145
IS - 3
SP - 243
EP - 259
AB - The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is $LC^{n-1} & C^{n-1}$ (resp., $LC^{n-1}$) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.
LA - eng
KW - absolute (neighborhood) extensor in dimension n; n-regular base; n-regular extension operator; Kuratowski-Dugundji theorem; extensors
UR - http://eudml.org/doc/212045
ER -

References

top
  1. [1] A. Chigogidze, Noncompact absolute extensors in dimension n, n-soft mappings, and their applications, Izv. Akad. Nauk SSSR 50 (1) (1986), 156-180 (in Russian); English transl.: Math. USSR-Izv. 28 (1987), 151-174. Zbl0603.54018
  2. [2] A. Dranishnikov, Absolute extensors in dimension n and dimension-raising n-soft maps, Uspekhi Mat. Nauk 39 (5) (1984), 55-95 (in Russian); English transl.: Russian Math. Surveys 39 (1984). Zbl0572.54012
  3. [3] J. Dugundji, Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compositio Math. 13 (1958), 229-246. Zbl0089.38903
  4. [4] V. Filippov, On the dimension of products of topological spaces, Fund. Math. 106 (1980), 181-212 (in Russian). Zbl0464.54042
  5. [5] V. Gutev, Selections for quasi-l.s.c. mappings with uniformly equi- L C n range, Set-Valued Anal. 1 (1993), 319-328. Zbl0809.54016
  6. [6] R. Haydon, On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0-dim), Studia Math. 52 (1974), 23-31. Zbl0294.46016
  7. [7] K. Kuratowski, Sur les espaces localement connexes et péaniens en dimension n, Fund. Math. 24 (1935), 269-287. Zbl0011.04002
  8. [8] E. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562-580. Zbl0073.17702
  9. [9] R. Pol and E. Puzio-Pol, Remarks on Cartesian products, Fund. Math. 93 (1976), 57-69. 
  10. [10] E. V. Ščepin [E. V. Shchepin], Functors and uncountable powers of compacta, Uspekhi Mat. Nauk 36 (3) (1981), 3-62 (in Russian); English transl.: Russian Math. Surveys 36 (1981). Zbl0463.54009
  11. [11] L. Shirokov, On AE(n)-compacta and n-soft mappings, Sibirsk. Mat. Zh. 33 (1992), 151-156 (in Russian). Zbl0873.54020
  12. [12] H. Toruńczyk, Concerning locally homotopy negligible sets and characterizations of l 2 -manifolds, Fund. Math. 101 (1978), 93-110. Zbl0406.55003
  13. [13] V. Valov, Another characterization of AE(0)-spaces, Pacific J. Math. 127 (1987), 199-208. Zbl0593.54033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.