Page 1 Next

Displaying 1 – 20 of 80

Showing per page

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

Classical-type characterizations of non-metrizable ANE(n)-spaces

Valentin Gutev, Vesko Valov (1994)

Fundamenta Mathematicae

The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is L C n - 1 C n - 1 (resp., L C n - 1 ) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.

Continuous decompositions of Peano plane continua into pseudo-arcs

Janusz Prajs (1998)

Fundamenta Mathematicae

Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.

External Characterization of I-Favorable Spaces

Valov, Vesko (2011)

Mathematica Balkanica New Series

1991 AMS Math. Subj. Class.:Primary 54C10; Secondary 54F65We provide both a spectral and an internal characterizations of arbitrary !-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact !-favorable spaces with respect to co-zero sets is also !-favorable with respect to co-zero sets. We also prove that every C* -embedded !-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.

Currently displaying 1 – 20 of 80

Page 1 Next