# Minor cycles for interval maps

Fundamenta Mathematicae (1994)

- Volume: 145, Issue: 3, page 281-304
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topMisiurewicz, Michał. "Minor cycles for interval maps." Fundamenta Mathematicae 145.3 (1994): 281-304. <http://eudml.org/doc/212047>.

@article{Misiurewicz1994,

abstract = {For continuous maps of an interval into itself we consider cycles (periodic orbits) that are non-reducible in the sense that there is no non-trivial partition into blocks of consecutive points permuted by the map. Among them we identify the miror ones. They are those whose existence does not imply existence of other non-reducible cycles of the same period. Moreover, we find minor patterns of a given period with minimal entropy.},

author = {Misiurewicz, Michał},

journal = {Fundamenta Mathematicae},

keywords = {interval maps; periodic orbit; -covering; Markov graph; Štefan cycle; entropy},

language = {eng},

number = {3},

pages = {281-304},

title = {Minor cycles for interval maps},

url = {http://eudml.org/doc/212047},

volume = {145},

year = {1994},

}

TY - JOUR

AU - Misiurewicz, Michał

TI - Minor cycles for interval maps

JO - Fundamenta Mathematicae

PY - 1994

VL - 145

IS - 3

SP - 281

EP - 304

AB - For continuous maps of an interval into itself we consider cycles (periodic orbits) that are non-reducible in the sense that there is no non-trivial partition into blocks of consecutive points permuted by the map. Among them we identify the miror ones. They are those whose existence does not imply existence of other non-reducible cycles of the same period. Moreover, we find minor patterns of a given period with minimal entropy.

LA - eng

KW - interval maps; periodic orbit; -covering; Markov graph; Štefan cycle; entropy

UR - http://eudml.org/doc/212047

ER -

## References

top- [ALMY] Ll. Alsedà, J. Llibre and M. Misiurewicz, Periodic orbits of maps of Y, Trans. Amer. Math. Soc. 313 (1989), 475-538 Zbl0803.54032
- [ALM] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Scientific, 1993. Zbl0843.58034
- [BCMM] C. Bernhardt, E. Coven, M. Misiurewicz and I. Mulvey, Comparing periodic orbits of maps of the interval, Trans. Amer. Math. Soc., to appear.
- [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
- [FM] J. Franks and M. Misiurewicz, Cycles for disk homeomorphisms and thick trees, in: Nielsen Theory and Dynamical Systems, C. K. McCord (ed.), Contemp. Math. 152, Amer. Math. Soc., Providence, R.I., 1993, 69-139 Zbl0793.58029
- [LMPY] T.-Y. Li, M. Misiurewicz, G. Pianigiani and J. Yorke, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), 191-199. Zbl0495.58018
- [S] P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248. Zbl0354.54027

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.