On entropy of patterns given by interval maps

Jozef Bobok

Fundamenta Mathematicae (1999)

  • Volume: 162, Issue: 1, page 1-36
  • ISSN: 0016-2736

Abstract

top
Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in[11].

How to cite

top

Bobok, Jozef. "On entropy of patterns given by interval maps." Fundamenta Mathematicae 162.1 (1999): 1-36. <http://eudml.org/doc/212410>.

@article{Bobok1999,
abstract = {Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in[11].},
author = {Bobok, Jozef},
journal = {Fundamenta Mathematicae},
keywords = {interval map; topological entropy; cycle; pattern},
language = {eng},
number = {1},
pages = {1-36},
title = {On entropy of patterns given by interval maps},
url = {http://eudml.org/doc/212410},
volume = {162},
year = {1999},
}

TY - JOUR
AU - Bobok, Jozef
TI - On entropy of patterns given by interval maps
JO - Fundamenta Mathematicae
PY - 1999
VL - 162
IS - 1
SP - 1
EP - 36
AB - Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in[11].
LA - eng
KW - interval map; topological entropy; cycle; pattern
UR - http://eudml.org/doc/212410
ER -

References

top
  1. [1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. Zbl0127.13102
  2. [2] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993. Zbl0843.58034
  3. [3] L. Alsedà, J. Llibre and M. Misiurewicz, Periodic orbits of maps of Y, Trans. Amer. Math. Soc. 313 (1989), 475-538. Zbl0803.54032
  4. [4] S. Baldwin, Generalizations of a theorem of Sharkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-127. Zbl0632.06005
  5. [5] A. Berman and R. J. Plemmons, Non-Negative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. Zbl0484.15016
  6. [6] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992. 
  7. [7] L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34. Zbl0447.58028
  8. [8] A. Blokh, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type order for patterns on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1-14. Zbl0842.58018
  9. [9] A. Blokh, Functional rotation numbers for one dimensional maps, Trans. Amer. Math. Soc. 347 (1995), 499-514. 
  10. [10] A. Blokh, On rotation intervals for interval maps, Nonlinearity 7 (1994), 1395-1417. Zbl0809.58008
  11. [11] A. Blokh and M. Misiurewicz, Entropy of twist interval maps, Israel J. Math. 102 (1997), 61-99. Zbl0885.54016
  12. [12] J. Bobok and M. Kuchta, X-minimal patterns and generalization of Sharkovskii's theorem, Fund. Math. 156 (1998), 33-66. Zbl0909.26003
  13. [13] J. Bobok and I. Marek, On asymptotic behaviour of solutions of difference equations in partially ordered Banach spaces, submitted to Positivity. 
  14. [14] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. Zbl0212.29201
  15. [15] E. M. Coven and M. C. Hidalgo, On the topological entropy of transitive maps of the interval, Bull. Austral. Math. Soc. 44 (1991), 207-213. Zbl0725.58011
  16. [16] M. Denker, Ch. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976. Zbl0328.28008
  17. [17] T. Fort, Finite Difference and Difference Equations in the Real Domain, Oxford Univ. Press, 1965. 
  18. [18] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge Univ. Press, 1995. Zbl0878.58020
  19. [19] M. Misiurewicz, Minor cycles for interval maps, Fund. Math. 145 (1994), 281-304. Zbl0818.58014
  20. [20] M. Misiurewicz and Z. Nitecki, Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc. 456 (1990). 
  21. [21] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. Zbl0445.54007
  22. [22] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378. Zbl0146.18604
  23. [23] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974. 
  24. [24] P. Štefan, A theorem of Sharkovskii on the coexistence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248. Zbl0354.54027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.