Rational Hopf G-spaces with two nontrivial homotopy group systems
Fundamenta Mathematicae (1995)
- Volume: 146, Issue: 2, page 101-106
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDoman, Ryszard. "Rational Hopf G-spaces with two nontrivial homotopy group systems." Fundamenta Mathematicae 146.2 (1995): 101-106. <http://eudml.org/doc/212054>.
@article{Doman1995,
abstract = {Let G be a finite group. We prove that every rational G-connected Hopf G-space with two nontrivial homotopy group systems is G-homotopy equivalent to an infinite loop G-space.},
author = {Doman, Ryszard},
journal = {Fundamenta Mathematicae},
keywords = {rational homotopy theory; Bredon cohomology},
language = {eng},
number = {2},
pages = {101-106},
title = {Rational Hopf G-spaces with two nontrivial homotopy group systems},
url = {http://eudml.org/doc/212054},
volume = {146},
year = {1995},
}
TY - JOUR
AU - Doman, Ryszard
TI - Rational Hopf G-spaces with two nontrivial homotopy group systems
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 2
SP - 101
EP - 106
AB - Let G be a finite group. We prove that every rational G-connected Hopf G-space with two nontrivial homotopy group systems is G-homotopy equivalent to an infinite loop G-space.
LA - eng
KW - rational homotopy theory; Bredon cohomology
UR - http://eudml.org/doc/212054
ER -
References
top- [1] G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer, 1967.
- [2] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264. Zbl0163.28202
- [3] H. Scheerer, On rationalized H- and co-H-spaces, Manuscripta Math. 51 (1984), 63-87.
- [4] G. W. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), 509-532. Zbl0516.55010
- [5] G. W. Triantafillou, Rationalization of Hopf G-spaces, Math. Z. 182 (1983), 485-500. Zbl0518.55008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.