ℳ-rank and meager types

Ludomir Newelski

Fundamenta Mathematicae (1995)

  • Volume: 146, Issue: 2, page 121-139
  • ISSN: 0016-2736

Abstract

top
Assume T is superstable and small. Using the multiplicity rank ℳ we find locally modular types in the same manner as U-rank considerations yield regular types. We define local versions of ℳ-rank, which also yield meager types.

How to cite

top

Newelski, Ludomir. "ℳ-rank and meager types." Fundamenta Mathematicae 146.2 (1995): 121-139. <http://eudml.org/doc/212056>.

@article{Newelski1995,
abstract = {Assume T is superstable and small. Using the multiplicity rank ℳ we find locally modular types in the same manner as U-rank considerations yield regular types. We define local versions of ℳ-rank, which also yield meager types.},
author = {Newelski, Ludomir},
journal = {Fundamenta Mathematicae},
keywords = {superstability; trace; forking; orthogonality; additivity; multiplicity rank; local rank},
language = {eng},
number = {2},
pages = {121-139},
title = {ℳ-rank and meager types},
url = {http://eudml.org/doc/212056},
volume = {146},
year = {1995},
}

TY - JOUR
AU - Newelski, Ludomir
TI - ℳ-rank and meager types
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 2
SP - 121
EP - 139
AB - Assume T is superstable and small. Using the multiplicity rank ℳ we find locally modular types in the same manner as U-rank considerations yield regular types. We define local versions of ℳ-rank, which also yield meager types.
LA - eng
KW - superstability; trace; forking; orthogonality; additivity; multiplicity rank; local rank
UR - http://eudml.org/doc/212056
ER -

References

top
  1. [Ba] J. T. Baldwin, Fundamentals of Stability Theory, Springer, 1988. 
  2. [Hr-Sh] E. Hrushovski and S. Shelah, A dichotomy theorem for regular types, Ann. Pure Appl. Logic 45 (1989), 157-169. Zbl0697.03024
  3. [Ne1] L. Newelski, A model and its subset, J. Symbolic Logic 57 (1992), 644-658. Zbl0774.03015
  4. [Ne2] L. Newelski, Meager forking, Ann. Pure Appl. Logic, to appear. 
  5. [Pi] A. Pillay, Certain locally modular regular superstable groups, preprint, 1992. 
  6. [Sh] S. Shelah, Classification Theory, 2nd ed., North-Holland, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.