# ℳ-rank and meager groups

Fundamenta Mathematicae (1996)

- Volume: 150, Issue: 2, page 149-171
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topNewelski, Ludomir. "ℳ-rank and meager groups." Fundamenta Mathematicae 150.2 (1996): 149-171. <http://eudml.org/doc/212167>.

@article{Newelski1996,

abstract = {Assume p* is a meager type in a superstable theory T. We investigate definability properties of p*-closure. We prove that if T has $<2^\{ℵ_0\}$ countable models then the multiplicity rank ℳ of every type p is finite. We improve Saffe’s conjecture.},

author = {Newelski, Ludomir},

journal = {Fundamenta Mathematicae},

keywords = {meager group; superstable theory; definability; -closures; meager types; multiplicity rank},

language = {eng},

number = {2},

pages = {149-171},

title = {ℳ-rank and meager groups},

url = {http://eudml.org/doc/212167},

volume = {150},

year = {1996},

}

TY - JOUR

AU - Newelski, Ludomir

TI - ℳ-rank and meager groups

JO - Fundamenta Mathematicae

PY - 1996

VL - 150

IS - 2

SP - 149

EP - 171

AB - Assume p* is a meager type in a superstable theory T. We investigate definability properties of p*-closure. We prove that if T has $<2^{ℵ_0}$ countable models then the multiplicity rank ℳ of every type p is finite. We improve Saffe’s conjecture.

LA - eng

KW - meager group; superstable theory; definability; -closures; meager types; multiplicity rank

UR - http://eudml.org/doc/212167

ER -

## References

top- [Ba] J. T. Baldwin, Fundamentals of Stability Theory, Springer, Berlin, 1988.
- [Hru] E. Hrushovski, Locally modular regular types, in: Classification Theory, Proc., Chicago 1985, J. T. Baldwin (ed.), Springer, Berlin, 1988, 132-164.
- [H-P] E. Hrushovski and A. Pillay, Weakly normal groups, in: Logic Colloquium '85, The Paris Logic Group (eds.), North-Holland, Amsterdam, 1987, 233-244.
- [H-S] E. Hrushovski and S. Shelah, A dichotomy theorem for regular types, Ann. Pure Appl. Logic 45 (1989), 157-169. Zbl0697.03024
- [L-P] L. F. Low and A. Pillay, Superstable theories with few countable models, Arch. Math. Logic 31 (1992), 457-465. Zbl0806.03023
- [Ne1] L. Newelski, A model and its subset, J. Symbolic Logic 57 (1992), 644-658. Zbl0774.03015
- [Ne2] L. Newelski, Meager forking, Ann. Pure Appl. Logic 70 (1994), 141-175. Zbl0817.03017
- [Ne3] L. Newelski, ℳ-rank and meager types, Fund. Math. 146 (1995), 121-139. Zbl0829.03016
- [Ne4] L. Newelski, On atomic or saturated sets, J. Symbolic Logic, to appear. Zbl0863.03015
- [Ne5] L. Newelski, ℳ-gap conjecture and m-normal theories, preprint, 1995.
- [Sh] S. Shelah, Classification Theory, 2nd ed., North-Holland, 1990.
- [T] P. Tanovic, Fundamental order and the number of countable models, Ph.D. thesis, McGill University, December 1993.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.