ℳ-rank and meager groups
Fundamenta Mathematicae (1996)
- Volume: 150, Issue: 2, page 149-171
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topNewelski, Ludomir. "ℳ-rank and meager groups." Fundamenta Mathematicae 150.2 (1996): 149-171. <http://eudml.org/doc/212167>.
@article{Newelski1996,
	abstract = {Assume p* is a meager type in a superstable theory T. We investigate definability properties of p*-closure. We prove that if T has $<2^\{ℵ_0\}$ countable models then the multiplicity rank ℳ of every type p is finite. We improve Saffe’s conjecture.},
	author = {Newelski, Ludomir},
	journal = {Fundamenta Mathematicae},
	keywords = {meager group; superstable theory; definability; -closures; meager types; multiplicity rank},
	language = {eng},
	number = {2},
	pages = {149-171},
	title = {ℳ-rank and meager groups},
	url = {http://eudml.org/doc/212167},
	volume = {150},
	year = {1996},
}
TY  - JOUR
AU  - Newelski, Ludomir
TI  - ℳ-rank and meager groups
JO  - Fundamenta Mathematicae
PY  - 1996
VL  - 150
IS  - 2
SP  - 149
EP  - 171
AB  - Assume p* is a meager type in a superstable theory T. We investigate definability properties of p*-closure. We prove that if T has $<2^{ℵ_0}$ countable models then the multiplicity rank ℳ of every type p is finite. We improve Saffe’s conjecture.
LA  - eng
KW  - meager group; superstable theory; definability; -closures; meager types; multiplicity rank
UR  - http://eudml.org/doc/212167
ER  - 
References
top- [Ba] J. T. Baldwin, Fundamentals of Stability Theory, Springer, Berlin, 1988.
- [Hru] E. Hrushovski, Locally modular regular types, in: Classification Theory, Proc., Chicago 1985, J. T. Baldwin (ed.), Springer, Berlin, 1988, 132-164.
- [H-P] E. Hrushovski and A. Pillay, Weakly normal groups, in: Logic Colloquium '85, The Paris Logic Group (eds.), North-Holland, Amsterdam, 1987, 233-244.
- [H-S] E. Hrushovski and S. Shelah, A dichotomy theorem for regular types, Ann. Pure Appl. Logic 45 (1989), 157-169. Zbl0697.03024
- [L-P] L. F. Low and A. Pillay, Superstable theories with few countable models, Arch. Math. Logic 31 (1992), 457-465. Zbl0806.03023
- [Ne1] L. Newelski, A model and its subset, J. Symbolic Logic 57 (1992), 644-658. Zbl0774.03015
- [Ne2] L. Newelski, Meager forking, Ann. Pure Appl. Logic 70 (1994), 141-175. Zbl0817.03017
- [Ne3] L. Newelski, ℳ-rank and meager types, Fund. Math. 146 (1995), 121-139. Zbl0829.03016
- [Ne4] L. Newelski, On atomic or saturated sets, J. Symbolic Logic, to appear. Zbl0863.03015
- [Ne5] L. Newelski, ℳ-gap conjecture and m-normal theories, preprint, 1995.
- [Sh] S. Shelah, Classification Theory, 2nd ed., North-Holland, 1990.
- [T] P. Tanovic, Fundamental order and the number of countable models, Ph.D. thesis, McGill University, December 1993.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 