Self homotopy equivalences of classifying spaces of compact connected Lie groups

Stefan Jackowski; James McClure; Bob Oliver

Fundamenta Mathematicae (1995)

  • Volume: 147, Issue: 2, page 99-126
  • ISSN: 0016-2736

Abstract

top
We describe, for any compact connected Lie group G and any prime p, the monoid of self maps B G p B G p which are rational equivalences. Here, B G p denotes the p-adic completion of the classifying space of G. Among other things, we show that two such maps are homotopic if and only if they induce the same homomorphism in rational cohomology, if and only if their restrictions to the classifying space of the maximal torus of G are homotopic.

How to cite

top

Jackowski, Stefan, McClure, James, and Oliver, Bob. "Self homotopy equivalences of classifying spaces of compact connected Lie groups." Fundamenta Mathematicae 147.2 (1995): 99-126. <http://eudml.org/doc/212084>.

@article{Jackowski1995,
abstract = {We describe, for any compact connected Lie group G and any prime p, the monoid of self maps $BG_\{^p\}$ → $BG_\{^p\}$ which are rational equivalences. Here, $BG_\{^p\}$ denotes the p-adic completion of the classifying space of G. Among other things, we show that two such maps are homotopic if and only if they induce the same homomorphism in rational cohomology, if and only if their restrictions to the classifying space of the maximal torus of G are homotopic.},
author = {Jackowski, Stefan, McClure, James, Oliver, Bob},
journal = {Fundamenta Mathematicae},
keywords = {monoid of homotopy classes of self-maps; compact connected Lie group; classifying space; homotopy classes of -equivalences; -adic completion},
language = {eng},
number = {2},
pages = {99-126},
title = {Self homotopy equivalences of classifying spaces of compact connected Lie groups},
url = {http://eudml.org/doc/212084},
volume = {147},
year = {1995},
}

TY - JOUR
AU - Jackowski, Stefan
AU - McClure, James
AU - Oliver, Bob
TI - Self homotopy equivalences of classifying spaces of compact connected Lie groups
JO - Fundamenta Mathematicae
PY - 1995
VL - 147
IS - 2
SP - 99
EP - 126
AB - We describe, for any compact connected Lie group G and any prime p, the monoid of self maps $BG_{^p}$ → $BG_{^p}$ which are rational equivalences. Here, $BG_{^p}$ denotes the p-adic completion of the classifying space of G. Among other things, we show that two such maps are homotopic if and only if they induce the same homomorphism in rational cohomology, if and only if their restrictions to the classifying space of the maximal torus of G are homotopic.
LA - eng
KW - monoid of homotopy classes of self-maps; compact connected Lie group; classifying space; homotopy classes of -equivalences; -adic completion
UR - http://eudml.org/doc/212084
ER -

References

top
  1. [Ad] J. F. Adams, Lectures on Lie Groups, Benjamin, 1969. 
  2. [AM] J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. 35 (1976), 1-41. Zbl0306.55019
  3. [Br] A. Borel, Topics in the Homology Theory of Fiber Bundles, Lecture Notes in Math. 36, Springer, 1967. 
  4. [Bt] R. Bott, On torsion in Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 586-588. Zbl0057.02201
  5. [Bb1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4-6, Hermann 1968. 
  6. [Bb2] N. Bourbaki, Groupes et algèbres de Lie, Chapitre 9, Hermann, 1982. 
  7. [Bf] A. Bousfield, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989), 54-104. Zbl0677.55020
  8. [BK] A. Bousfield and D. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, 1972. Zbl0259.55004
  9. [DW] W. Dwyer and C. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), 37-64. Zbl0769.55007
  10. [DW2] W. Dwyer and C. Wilkerson, The center of a p-compact group, in: The Čech Centennial: A Conference on Homotopy Theory, M. Cenkl and H. Miller (eds.), Contemp. Math. 181, Amer. Math. Soc., to appear. 
  11. [DZ] W. Dwyer and A. Zabrodsky, Maps between classifying spaces, in: Algebraic Topology, Barcelona, 1976, Lecture Notes in Math. 1298, Springer, 1987, 106-119. 
  12. [Fe] M. Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), 1-20. Zbl0606.57024
  13. [Fr] E. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math. 101 (1975), 510-520. Zbl0308.55016
  14. [Hu] J. Hubbuck, Homotopy representations of Lie groups, in: New Developments in Topology, London Math. Soc. Lecture Note Ser. 11, Cambridge Univ. Press, 1974, 33-41. 
  15. [Is] K. Ishiguro, Unstable Adams operations on classifying spaces, Math. Proc. Cambridge Philos. Soc. 102 (1987), 71-75. 
  16. [JMO] S. Jackowski, J. McClure and B. Oliver, Homotopy classification of self-maps of BG via G-actions, Ann. of Math. 135 (1992), 183-270. Zbl0771.55003
  17. [Ml] J. Milnor, Morse Theory, Princeton Univ. Press, 1969. 
  18. [Ms] G. Mislin, The homotopy classification of self-maps of infinite quaternionic projective space, Quart. J. Math. Oxford 38 (1987), 245-257. Zbl0625.55013
  19. [MZ] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, 1955. 
  20. [Mø] J. M. Møller, The normalizer of the Weyl group, Math. Ann. 294 (1992), 59-80. Zbl0761.55006
  21. [No1] D. Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), 153-168. Zbl0731.55011
  22. [No2] D. Notbohm, Maps between classifying spaces and applications, J. Pure Appl. Algebra 89 (1993), 273-294. Zbl0794.55011
  23. [Su] D. Sullivan, Geometric Topology, Part I: Localization, Periodicity and Galois Symmetry, Mimeographed notes, M.I.T., 1970. 
  24. [Wi] C. W. Wilkerson, Self-maps of classifying spaces, in: Localization in Group Theory and Homotopy Theory, Lecture Notes in Math. 418, Springer, 1974, 150-157. 
  25. [Wo] Z. Wojtkowiak, On maps from holim F to Z, in: Algebraic Topology, Barcelona, 1986, Lecture Notes in Math. 1298, Springer, 1987, 227-236. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.