On the category of modules of second kind for Galois coverings

Piotr Dowbor

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 1, page 31-54
  • ISSN: 0016-2736

Abstract

top
Let F: R → R/G be a Galois covering and m o d 1 ( R / G ) (resp. m o d 2 ( R / G ) ) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories ( m o d ( R / G ) ) / [ m o d 1 ( R / G ) ] and m o d 2 ( R / G ) is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.

How to cite

top

Dowbor, Piotr. "On the category of modules of second kind for Galois coverings." Fundamenta Mathematicae 149.1 (1996): 31-54. <http://eudml.org/doc/212107>.

@article{Dowbor1996,
abstract = {Let F: R → R/G be a Galois covering and $mod_1(R/G)$ (resp. $mod_2(R/G)$) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories $(mod (R/G))/[mod_1(R/G)]$ and $mod_2(R/G)$ is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.},
author = {Dowbor, Piotr},
journal = {Fundamenta Mathematicae},
keywords = {finite dimensional basic algebras; universal Galois coverings; Galois groups; locally bounded categories; Galois covering functors; push-down functors; category of finite dimensional modules; modules of the first kind; faithful functors; induced functors; coproduct decompositions},
language = {eng},
number = {1},
pages = {31-54},
title = {On the category of modules of second kind for Galois coverings},
url = {http://eudml.org/doc/212107},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Dowbor, Piotr
TI - On the category of modules of second kind for Galois coverings
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 1
SP - 31
EP - 54
AB - Let F: R → R/G be a Galois covering and $mod_1(R/G)$ (resp. $mod_2(R/G)$) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories $(mod (R/G))/[mod_1(R/G)]$ and $mod_2(R/G)$ is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.
LA - eng
KW - finite dimensional basic algebras; universal Galois coverings; Galois groups; locally bounded categories; Galois covering functors; push-down functors; category of finite dimensional modules; modules of the first kind; faithful functors; induced functors; coproduct decompositions
UR - http://eudml.org/doc/212107
ER -

References

top
  1. [AR] M. Auslander and I. Reiten, Representation theory of artin algebras IV, Comm. Algebra 5 (1977), 443-518. 
  2. [BG] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. Zbl0482.16026
  3. [DS1] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529. Zbl0576.16029
  4. [DS2] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337. Zbl0628.16019
  5. [DLS] P. Dowbor, H. Lenzing and A. Skowroński, Galois coverings of algebras by locally support-finite categories, in: Proc. Ottawa 1984, Lecture Notes in Math. 1177, Springer, 1986, 91-93. Zbl0626.16009
  6. [G] P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Puebla 1980, Lecture Notes in Math. 903, Springer, 1981, 68-105. 
  7. [Gr] E. L. Green, Group-graded algebras and the zero relation problem, ibid., 106-115. 
  8. [L] S. Lang, Algebra, Addison-Wesley, 1970. 
  9. [M] S. MacLane, Categories for the Working Mathematician, Springer, 1971. 
  10. [P] Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371-384. 
  11. [R] Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224. 
  12. [S1] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-193. Zbl0653.16021
  13. [S2] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci., to appear. 
  14. [S3] A. Skowroński, Tame algebras with simply connected Galois coverings, preprint. 
  15. [W] R. B. Warfield, Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1989), 460-465. Zbl0176.31401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.