On the category of modules of second kind for Galois coverings
Fundamenta Mathematicae (1996)
- Volume: 149, Issue: 1, page 31-54
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDowbor, Piotr. "On the category of modules of second kind for Galois coverings." Fundamenta Mathematicae 149.1 (1996): 31-54. <http://eudml.org/doc/212107>.
@article{Dowbor1996,
	abstract = {Let F: R → R/G be a Galois covering and $mod_1(R/G)$ (resp. $mod_2(R/G)$) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories $(mod (R/G))/[mod_1(R/G)]$ and $mod_2(R/G)$ is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.},
	author = {Dowbor, Piotr},
	journal = {Fundamenta Mathematicae},
	keywords = {finite dimensional basic algebras; universal Galois coverings; Galois groups; locally bounded categories; Galois covering functors; push-down functors; category of finite dimensional modules; modules of the first kind; faithful functors; induced functors; coproduct decompositions},
	language = {eng},
	number = {1},
	pages = {31-54},
	title = {On the category of modules of second kind for Galois coverings},
	url = {http://eudml.org/doc/212107},
	volume = {149},
	year = {1996},
}
TY  - JOUR
AU  - Dowbor, Piotr
TI  - On the category of modules of second kind for Galois coverings
JO  - Fundamenta Mathematicae
PY  - 1996
VL  - 149
IS  - 1
SP  - 31
EP  - 54
AB  - Let F: R → R/G be a Galois covering and $mod_1(R/G)$ (resp. $mod_2(R/G)$) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories $(mod (R/G))/[mod_1(R/G)]$ and $mod_2(R/G)$ is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.
LA  - eng
KW  - finite dimensional basic algebras; universal Galois coverings; Galois groups; locally bounded categories; Galois covering functors; push-down functors; category of finite dimensional modules; modules of the first kind; faithful functors; induced functors; coproduct decompositions
UR  - http://eudml.org/doc/212107
ER  - 
References
top- [AR] M. Auslander and I. Reiten, Representation theory of artin algebras IV, Comm. Algebra 5 (1977), 443-518.
- [BG] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. Zbl0482.16026
- [DS1] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529. Zbl0576.16029
- [DS2] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337. Zbl0628.16019
- [DLS] P. Dowbor, H. Lenzing and A. Skowroński, Galois coverings of algebras by locally support-finite categories, in: Proc. Ottawa 1984, Lecture Notes in Math. 1177, Springer, 1986, 91-93. Zbl0626.16009
- [G] P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Puebla 1980, Lecture Notes in Math. 903, Springer, 1981, 68-105.
- [Gr] E. L. Green, Group-graded algebras and the zero relation problem, ibid., 106-115.
- [L] S. Lang, Algebra, Addison-Wesley, 1970.
- [M] S. MacLane, Categories for the Working Mathematician, Springer, 1971.
- [P] Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371-384.
- [R] Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
- [S1] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-193. Zbl0653.16021
- [S2] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci., to appear.
- [S3] A. Skowroński, Tame algebras with simply connected Galois coverings, preprint.
- [W] R. B. Warfield, Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1989), 460-465. Zbl0176.31401
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 