On the tameness of trivial extension algebras

Ibrahim Assem; José de la Peña

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 2, page 171-181
  • ISSN: 0016-2736

Abstract

top
For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if T A is a tilting module and B = E n d T A , then T(A) is tame if and only if T(B) is tame.

How to cite

top

Assem, Ibrahim, and de la Peña, José. "On the tameness of trivial extension algebras." Fundamenta Mathematicae 149.2 (1996): 171-181. <http://eudml.org/doc/212115>.

@article{Assem1996,
abstract = {For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if $T_A$ is a tilting module and $B=End T_A$, then T(A) is tame if and only if T(B) is tame.},
author = {Assem, Ibrahim, de la Peña, José},
journal = {Fundamenta Mathematicae},
keywords = {stable equivalence; tame algebras; finite dimensional algebras; trivial extensions; minimal injective cogenerators; tilting modules},
language = {eng},
number = {2},
pages = {171-181},
title = {On the tameness of trivial extension algebras},
url = {http://eudml.org/doc/212115},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Assem, Ibrahim
AU - de la Peña, José
TI - On the tameness of trivial extension algebras
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 2
SP - 171
EP - 181
AB - For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if $T_A$ is a tilting module and $B=End T_A$, then T(A) is tame if and only if T(B) is tame.
LA - eng
KW - stable equivalence; tame algebras; finite dimensional algebras; trivial extensions; minimal injective cogenerators; tilting modules
UR - http://eudml.org/doc/212115
ER -

References

top
  1. [1] I. Assem, Tilting theory - an introduction, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 127-180. 
  2. [2] I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242. Zbl0564.16027
  3. [3] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extension of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. Zbl0686.16011
  4. [4] M. Auslander and I. Reiten, Representation theory of artin algebras III, IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518. 
  5. [5] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, Berlin, 1980, 240-258. 
  6. [6] R. M. Fossum, P. A. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Lecture Notes in Math. 456, Springer, Berlin, 1975. Zbl0303.18006
  7. [7] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (2) (1982), 399-443. Zbl0503.16024
  8. [8] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364. Zbl0488.16021
  9. [9] R. Martínez-Villa, Properties that are left invariant under stable equivalence, Comm. Algebra 18 (12) (1990), 4141-4169. Zbl0724.16002
  10. [10] J. Nehring, Trywialne rozszerzenia wielomianowego wzrostu [Trivial extensions of polynomial growth], Ph.D. thesis, Nicholas Copernicus Univ., 1989 (in Polish). 
  11. [11] J. Nehring, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. Math. 36 (1988), 441-445. Zbl0777.16008
  12. [12] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. Zbl0677.16008
  13. [13] J. A. de la Peña, Functors preserving tameness, ibid. 137 (1991), 177-185. Zbl0790.16014
  14. [14] J. A. de la Peña, Constructible functors and the notion of tameness, Comm. Algebra, to appear. Zbl0858.16007
  15. [15] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984. 
  16. [16] H. Tachikawa, Selfinjective algebras and tilting theory, in: Representation Theory I. Finite Dimensional Algebras, Lectures Notes in Math. 1177, Springer, Berlin, 1986, 272-307. 
  17. [17] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165. Zbl0616.16012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.