The Dugundji extension property can fail in ωµ -metrizable spaces

Ian Stares; Jerry Vaughan

Fundamenta Mathematicae (1996)

  • Volume: 150, Issue: 1, page 11-16
  • ISSN: 0016-2736

Abstract

top
We show that there exist ω μ -metrizable spaces which do not have the Dugundji extension property ( 2 ω 1 with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.

How to cite

top

Stares, Ian, and Vaughan, Jerry. "The Dugundji extension property can fail in ωµ -metrizable spaces." Fundamenta Mathematicae 150.1 (1996): 11-16. <http://eudml.org/doc/212158>.

@article{Stares1996,
abstract = {We show that there exist $ω_μ$-metrizable spaces which do not have the Dugundji extension property ($2^\{ω_1\}$ with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.},
author = {Stares, Ian, Vaughan, Jerry},
journal = {Fundamenta Mathematicae},
keywords = {Dugundji extension theorem; $ω_μ$-metrizable spaces; box topology; Baire category; Michael line; -metrizable spaces; unbounded monotone extension; linearly stratifiable spaces},
language = {eng},
number = {1},
pages = {11-16},
title = {The Dugundji extension property can fail in ωµ -metrizable spaces},
url = {http://eudml.org/doc/212158},
volume = {150},
year = {1996},
}

TY - JOUR
AU - Stares, Ian
AU - Vaughan, Jerry
TI - The Dugundji extension property can fail in ωµ -metrizable spaces
JO - Fundamenta Mathematicae
PY - 1996
VL - 150
IS - 1
SP - 11
EP - 16
AB - We show that there exist $ω_μ$-metrizable spaces which do not have the Dugundji extension property ($2^{ω_1}$ with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.
LA - eng
KW - Dugundji extension theorem; $ω_μ$-metrizable spaces; box topology; Baire category; Michael line; -metrizable spaces; unbounded monotone extension; linearly stratifiable spaces
UR - http://eudml.org/doc/212158
ER -

References

top
  1. [1] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. Zbl0175.19802
  2. [2] C. J. R. Borges, Absolute extensor spaces: a correction and an answer, Pacific J. Math. 50 (1974), 29-30. Zbl0276.54025
  3. [3] K. Borsuk, Über Isomorphie der Funktionalräume, Bull. Internat. Acad. Polon. Ser. A 1933 (1//3), 1-10. Zbl0007.25201
  4. [4] J. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125. Zbl0103.39101
  5. [5] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, New York, 1974. 
  6. [6] E. K. van Douwen, Simultaneous extension of continuous functions, in: E. K. van Douwen, Collected Papers, Vol. 1, J. van Mill (ed.), North-Holland, Amsterdam, 1994. Zbl0309.54013
  7. [7] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. Zbl0043.38105
  8. [8] R. Engelking, On closed images of the space of irrationals, Proc. Amer. Math. Soc. 21 (1969), 583-586. Zbl0177.25501
  9. [9] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. 
  10. [10] R. W. Heath and D. J. Lutzer, Dugundji extension theorems for linearly ordered spaces, Pacific J. Math. 55 (1974), 419-425. Zbl0302.54017
  11. [11] P. J. Nyikos and H. C. Reichel, Topological characterizations of ω μ -metrizable spaces, Topology Appl. 44 (1992), 293-308. 
  12. [12] I. S. Stares, Concerning the Dugundji extension property, Topology Appl. 63 (1995), 165-172. 
  13. [13] J. E. Vaughan, Linearly stratifiable spaces, Pacific J. Math. 43 (1972), 253-265. Zbl0226.54027
  14. [14] S. W. Williams, Box products, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 169-200. 
  15. </REFERENCES> 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.