Deformations of bimodule problems
Fundamenta Mathematicae (1996)
- Volume: 150, Issue: 3, page 255-264
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topGeiß, Christof. "Deformations of bimodule problems." Fundamenta Mathematicae 150.3 (1996): 255-264. <http://eudml.org/doc/212176>.
@article{Geiß1996,
abstract = {We prove that deformations of tame Krull-Schmidt bimodule problems with trivial differential are again tame. Here we understand deformations via the structure constants of the projective realizations which may be considered as elements of a suitable variety. We also present some applications to the representation theory of vector space categories which are a special case of the above bimodule problems.},
author = {Geiß, Christof},
journal = {Fundamenta Mathematicae},
keywords = {bimodule problems; vector space categories; tame; wild; deformations; degenerations; categories of finite dimensional vector spaces; matrix representations; category of representations; geometric deformations; free triangular bocses; tame representation type; wild representation type},
language = {eng},
number = {3},
pages = {255-264},
title = {Deformations of bimodule problems},
url = {http://eudml.org/doc/212176},
volume = {150},
year = {1996},
}
TY - JOUR
AU - Geiß, Christof
TI - Deformations of bimodule problems
JO - Fundamenta Mathematicae
PY - 1996
VL - 150
IS - 3
SP - 255
EP - 264
AB - We prove that deformations of tame Krull-Schmidt bimodule problems with trivial differential are again tame. Here we understand deformations via the structure constants of the projective realizations which may be considered as elements of a suitable variety. We also present some applications to the representation theory of vector space categories which are a special case of the above bimodule problems.
LA - eng
KW - bimodule problems; vector space categories; tame; wild; deformations; degenerations; categories of finite dimensional vector spaces; matrix representations; category of representations; geometric deformations; free triangular bocses; tame representation type; wild representation type
UR - http://eudml.org/doc/212176
ER -
References
top- [1] K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. in Math., to appear. Zbl0862.16007
- [2] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. Zbl0661.16026
- [3] W. W. Crawley-Boevey, Functorial filtrations II: clans and the Gelfand problem, J. London Math. Soc. 40 (1989), 9-30. Zbl0725.16012
- [4] W. W. Crawley-Boevey, Matrix problems and Drozd's theorem, in: Topics in Algebra, Part 1: Rings and Representations of Algebras, Banach Center Publ. 26, PWN, Warszawa, 1990, 199-222.
- [5] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258.
- [6] Yu. A. Drozd and G. M. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules, Math. Ann. 294 (1992), 387-394. Zbl0760.16005
- [7] P. Gabriel, Finite representation type is open, in: Representations of Algebras, Lecture Notes in Math. 488, Springer, 1975, 132-155.
- [8] P. Gabriel, L. A. Nazarova, A. V. Roiter, V. V. 1Sergejchuk and D. Vossieck, Tame and wild subspace problems, Ukrain. Math. J. 45 (1993), 313-352.
- [9] P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras, Encyclopedia of Math. Sci. 73, Algebra VIII, Springer, 1992.
- [10] C. Geiß, Tame distributive algebras and related topics, Dissertation, Universität Bayreuth, 1993.
- [11] C. Geiß, On degenerations of tame and wild algebras, Arch. Math. (Basel) 64 (1995), 11-16. Zbl0828.16013
- [12] R. Hartshorne, Algebraic Geometry, Springer, 1977.
- [13] H. Kraft and C. Riedtmann, Geometry of representations of quivers, in: Representations of Algebras, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, 1985, 109-145. Zbl0632.16019
- [14] J. A. de la Pe na, On the dimension of module varieties of tame and wild algebras, Comm. Algebra 19 (1991), 1795-1805. Zbl0818.16013
- [15] J. A. de la Pe na, Functors preserving tameness, Fund. Math. 137 (1991), 77-185. Zbl0790.16014
- [16] J. A. de la Pe na and D. Simson, Preinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. Zbl0789.16010
- [17] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 134-287.
- [18] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [19] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992. Zbl0818.16009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.