On the homotopy category of Moore spaces and the cohomology of the category of abelian groups

Hans-Joachim Baues; Manfred Hartl

Fundamenta Mathematicae (1996)

  • Volume: 150, Issue: 3, page 265-289
  • ISSN: 0016-2736

Abstract

top
The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.

How to cite

top

Baues, Hans-Joachim, and Hartl, Manfred. "On the homotopy category of Moore spaces and the cohomology of the category of abelian groups." Fundamenta Mathematicae 150.3 (1996): 265-289. <http://eudml.org/doc/212177>.

@article{Baues1996,
abstract = {The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.},
author = {Baues, Hans-Joachim, Hartl, Manfred},
journal = {Fundamenta Mathematicae},
keywords = {homotopy category; Moore spaces; cohomology; category of abelian groups; James-Hopf invariants},
language = {eng},
number = {3},
pages = {265-289},
title = {On the homotopy category of Moore spaces and the cohomology of the category of abelian groups},
url = {http://eudml.org/doc/212177},
volume = {150},
year = {1996},
}

TY - JOUR
AU - Baues, Hans-Joachim
AU - Hartl, Manfred
TI - On the homotopy category of Moore spaces and the cohomology of the category of abelian groups
JO - Fundamenta Mathematicae
PY - 1996
VL - 150
IS - 3
SP - 265
EP - 289
AB - The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.
LA - eng
KW - homotopy category; Moore spaces; cohomology; category of abelian groups; James-Hopf invariants
UR - http://eudml.org/doc/212177
ER -

References

top
  1. [1] J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330. Zbl0071.16403
  2. [2] H.-J. Baues, Algebraic Homotopy, Cambridge Stud. Adv. Math. 15, Cambridge University Press, 1988. 
  3. [3] H.-J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, de Gruyter, Berlin, 1991. 
  4. [4] H.-J. Baues, Homotopy Type and Homology, Oxford Math. Monograph, Oxford University Press, 1996. Zbl0857.55001
  5. [5] H.-J. Baues, Commutator Calculus and Groups of Homotopy Classes, London Math. Soc. Lecture Note Ser. 50, Cambridge University Press, 1981. Zbl0473.55001
  6. [6] H.-J. Baues, Homotopy types, in: Handbook of Algebraic Topology, Chapter I, I. M. James (ed.), Elsevier, 1995, 1-72. 
  7. [7] H.-J. Baues, On the cohomology of categories, universal Toda brackets, and homotopy pairs, K-Theory, to appear. 
  8. [8] H.-J. Baues and W. Dreckmann, The cohomology of homotopy categories and the general linear group, K-Theory 3 (1989), 307-338. Zbl0701.18009
  9. [9] H.-J. Baues and G. Wirsching, The cohomology of small categories, J. Pure Appl. Algebra 38 (1985), 187-211. Zbl0587.18006
  10. [10] K. A. Hardie, On the category of homotopy pairs, Topology Appl. 14 (1982), 59-69. Zbl0499.55002
  11. [11] P. Hilton, Homotopy Theory and Duality, Gordon and Breach, 1965. 
  12. [12] I. M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197. 
  13. [13] M. Jibladze and T. Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), 253-296. Zbl0724.18005
  14. [14] T. Pirashvili and F. Waldhausen, MacLane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992), 81-98. Zbl0767.55010
  15. [15] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51-110. Zbl0037.26101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.