A note on the transfer map.
In this paper we introduce the categorical length, a homotopy version of Fox categorical sequence, and an extended version of relative L-S category which contains the classical notions of Berstein-Ganea and Fadell-Husseini. We then show that, for a space or a pair, the categorical length for categorical sequences is precisely the L-S category or the relative L-S category in the sense of Fadell-Husseini respectively. Higher Hopf invariants, cup length, module weights, and recent computations by Kono...
Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not...
The Hilton-Hopf quadratic form is defined for spaces of the homotopy type of a CW complex with one cell each in dimensions 0 and 4n, K cells in dimension 2n and no other cells. If two such spaces are of the same topological genus, then their Hilton-Hopf quadratic forms are of the same weak algebraic genus. For large classes of spaces, such as simply connected differentiable 4-manifolds, the converse is also true, as long as the suspensions of the spaces are also of the same topological genus. This...
The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.