Approximable dimension and acyclic resolutions

A. Koyama; R. Sher

Fundamenta Mathematicae (1997)

  • Volume: 152, Issue: 1, page 43-53
  • ISSN: 0016-2736

How to cite

top

Koyama, A., and Sher, R.. "Approximable dimension and acyclic resolutions." Fundamenta Mathematicae 152.1 (1997): 43-53. <http://eudml.org/doc/212198>.

@article{Koyama1997,
abstract = {},
author = {Koyama, A., Sher, R.},
journal = {Fundamenta Mathematicae},
keywords = {approximable dimension; cohomological dimension; acyclic resolution; $UV^\{n-1\}$-resolution; universal space; refinable mapping},
language = {eng},
number = {1},
pages = {43-53},
title = {Approximable dimension and acyclic resolutions},
url = {http://eudml.org/doc/212198},
volume = {152},
year = {1997},
}

TY - JOUR
AU - Koyama, A.
AU - Sher, R.
TI - Approximable dimension and acyclic resolutions
JO - Fundamenta Mathematicae
PY - 1997
VL - 152
IS - 1
SP - 43
EP - 53
AB -
LA - eng
KW - approximable dimension; cohomological dimension; acyclic resolution; $UV^{n-1}$-resolution; universal space; refinable mapping
UR - http://eudml.org/doc/212198
ER -

References

top
  1. [1] A. N. Dranishnikov, Universal Menger compacta and universal mappings, Math. USSR-Sb. 57 (1987), 131-149. Zbl0622.54026
  2. [2] A. N. Dranishnikov, Homological dimension theory, Russian Math. Surveys 43 (4) (1988), 11-63. Zbl0671.55003
  3. [3] J. Dydak, The Whitehead and the Smale theorems in shape theory, Dissertationes Math. 156 (1979). Zbl0405.55010
  4. [4] J. Dydak and J. Mogilski, Universal cell-like maps, Proc. Amer. Math. Soc. 122 (1994), 943-948. Zbl0823.54026
  5. [5] R. Engelking, Dimension Theory, Math. Library 19, North-Holland, 1978. Zbl0401.54029
  6. [6] W. Hurewicz, Über dimensionserhöhende stetige Abbildungen, J. Reine Angew. Math. 169 (1933), 71-78. 
  7. [7] A. Koyama, Refinable maps in dimension theory, Topology Appl. 17 (1984), 247-255. Zbl0541.54045
  8. [8] A. Koyama, A characterization of compacta which admit acyclic U V n - 1 -resolutions, Tsukuba J. Math. 20 (1996), 115-121. Zbl0888.54033
  9. [9] A. Koyama, Refinable maps in dimension theory II, Bull. Polish Acad. Sci. Math. 42 (1994), 255-261. Zbl0862.54027
  10. [10] A. Koyama and K. Yokoi, A unified approach of characterizations and resolutions for cohomological dimension modulo p, Tsukuba J. Math. 18 (1994), 247-282. Zbl0851.55001
  11. [11] W. Olszewski, Universal separable metrizable spaces of given cohomological dimension, Topology Appl. 61 (1995), 293-299. Zbl0823.54027
  12. [12] L. Rubin and P. Schapiro, Cell-like maps onto non-compact spaces of finite cohomological dimension, Topology Appl. 27 (1987), 221-244. Zbl0646.54038
  13. [13] J. Walsh, Dimension, cohomological dimension, and cell-like mappings, in: Lecture Notes in Math. 870, Springer, 1981, 105-118. 
  14. [14] K. Yokoi, Compactification and factorization theorems for transfinite covering dimension, Tsukuba J. Math. 15 (1991), 389-395. Zbl0789.54042
  15. [15] K. Yokoi, Cohomological dimension modulo p for metrizable spaces, Math. Japon., to appear. Zbl0845.55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.