Displaying similar documents to “Approximable dimension and acyclic resolutions”

Ordinal products of topological spaces

Vitalij Chatyrko (1994)

Fundamenta Mathematicae

Similarity:

The notion of the ordinal product of a transfinite sequence of topological spaces which is an extension of the finite product operation is introduced. The dimensions of finite and infinite ordinal products are estimated. In particular, the dimensions of ordinary products of Smirnov's [S] and Henderson's [He1] compacta are calculated.

Topological entropy on zero-dimensional spaces

Jozef Bobok, Ondřej Zindulka (1999)

Fundamenta Mathematicae

Similarity:

Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.

Universal spaces in the theory of transfinite dimension, I

Wojciech Olszewski (1994)

Fundamenta Mathematicae

Similarity:

R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.

Endomorphism algebras over large domains

Rüdiger Göbel, Simone Pabst (1998)

Fundamenta Mathematicae

Similarity:

The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain

Minimal bi-Lipschitz embedding dimension of ultrametric spaces

Jouni Luukkainen, Hossein Movahedi-Lankarani (1994)

Fundamenta Mathematicae

Similarity:

We prove that an ultrametric space can be bi-Lipschitz embedded in n if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

A Nielsen theory for intersection numbers

Christopher McCord (1997)

Fundamenta Mathematicae

Similarity:

Nielsen theory, originally developed as a homotopy-theoretic approach to fixed point theory, has been translated and extended to various other problems, such as the study of periodic points, coincidence points and roots. In this paper, the techniques of Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number, the Nielsen intersection number NI(f,g), is introduced, and shown to have many of the properties analogous to those of the Nielsen fixed point number....