σ-Entangled linear orders and narrowness of products of Boolean algebras

Saharon Shelah

Fundamenta Mathematicae (1997)

  • Volume: 153, Issue: 3, page 199-275
  • ISSN: 0016-2736

Abstract

top
We investigate σ-entangled linear orders and narrowness of Boolean algebras. We show existence of σ-entangled linear orders in many cardinals, and we build Boolean algebras with neither large chains nor large pies. We study the behavior of these notions in ultraproducts.

How to cite

top

Shelah, Saharon. "σ-Entangled linear orders and narrowness of products of Boolean algebras." Fundamenta Mathematicae 153.3 (1997): 199-275. <http://eudml.org/doc/212223>.

@article{Shelah1997,
abstract = {We investigate σ-entangled linear orders and narrowness of Boolean algebras. We show existence of σ-entangled linear orders in many cardinals, and we build Boolean algebras with neither large chains nor large pies. We study the behavior of these notions in ultraproducts.},
author = {Shelah, Saharon},
journal = {Fundamenta Mathematicae},
keywords = {-entangled linear orders; interval Boolean algebras; pie; cardinal; ultrafilter},
language = {eng},
number = {3},
pages = {199-275},
title = {σ-Entangled linear orders and narrowness of products of Boolean algebras},
url = {http://eudml.org/doc/212223},
volume = {153},
year = {1997},
}

TY - JOUR
AU - Shelah, Saharon
TI - σ-Entangled linear orders and narrowness of products of Boolean algebras
JO - Fundamenta Mathematicae
PY - 1997
VL - 153
IS - 3
SP - 199
EP - 275
AB - We investigate σ-entangled linear orders and narrowness of Boolean algebras. We show existence of σ-entangled linear orders in many cardinals, and we build Boolean algebras with neither large chains nor large pies. We study the behavior of these notions in ultraproducts.
LA - eng
KW - -entangled linear orders; interval Boolean algebras; pie; cardinal; ultrafilter
UR - http://eudml.org/doc/212223
ER -

References

top
  1. [ARSh 153] U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of 1 -dense real order types, Ann. Pure Appl. Logic 29 (1985), 123-206. Zbl0585.03019
  2. [AbSh 106] U. Avraham [Abraham] and S. Shelah, Martin’s axiom does not imply that every two 1 -dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176. Zbl0457.03048
  3. [Bo] R. Bonnet, Sur les algèbres de Boole rigides, PhD thesis, Université Lyon 1, 1978. 
  4. [BoSh 210] R. Bonnet and S. Shelah, Narrow Boolean algebras, Ann. Pure Appl. Logic 28 (1985), 1-12. 
  5. [CK] C. C. Chang and H. J. Keisler, Model Theory, Stud. Logic Found. Math. 73, North-Holland, Amsterdam, 1973. 
  6. [EK] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275-285. Zbl0137.41904
  7. [HLSh 162] B. Hart, C. Laflamme and S. Shelah, Models with second order properties, V: A General principle, Ann. Pure Appl. Logic 64 (1993), 169-194. Zbl0788.03046
  8. [MgSh433] M. Magidor and S. Shelah, Length of Boolean algebras and ultraproducts, preprint. 
  9. [M1] D. Monk, Cardinal Invariants of Boolean Algebras, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 1990. 
  10. [M2] D. Monk, Cardinal Invariants of Boolean Algebras, Progr. Math. 142, Birkhäuser, Basel, 1996. 
  11. [RoSh 534] A. Rosłanowski and S. Shelah, Cardinal invariants of ultrapoducts of Boolean algebras, Fund. Math., to appear. 
  12. [RoSh 599] A. Rosłanowski and S. Shelah, More on cardinal functions on Boolean algebras, preprint. 
  13. [SaSh 553] O. Shafir and S. Shelah, More on entangled linear orders, preprint. 
  14. [Sh 620] S. Shelah, On measure algebra, in: Proc. Conf. Prague 1996, submitted. 
  15. [Sh 460] S. Shelah, The Generalized Continuum Hypothesis revisited, Israel J. Math., submitted. Zbl0955.03054
  16. [Sh 50] S. Shelah, Decomposing uncountable squares to countably many chains, J. Combin. Theory Ser. A 21 (1976), 110-114. Zbl0366.04009
  17. [Sh 345] S. Shelah, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel J. Math. 70 (1990), 129-187. Zbl0722.03038
  18. [Sh 410] S. Shelah, More on Cardinal Arithmetic, Arch. Math. Logic 32 (1993), 399-428. Zbl0799.03052
  19. [Sh 371] S. Shelah, Advanced: cofinalities of small reduced products, Chapter VIII of [Sh g]. 
  20. [Sh 355] S. Shelah, ω + 1 has a Jonsson Algebra, Chapter II of [Sh g]. 
  21. [Sh 345a] S. Shelah, Basic: Cofinalities of small reduced products, Chapter I of [Sh g]. 
  22. [Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994. 
  23. [Sh 400] S. Shelah, Cardinal arithmetic, Chapter IX of [Sh g]. 
  24. [Sh 345b] S. Shelah, Entangled orders and narrow Boolean algebras, Appendix 2 to [Sh g]. 
  25. [Sh 405] S. Shelah, Vive la différence II. The Ax-Kochen isomorphism theorem, Israel J. Math. 85 (1994), 351-390. Zbl0812.03018
  26. [Sh 430] S. Shelah, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114. Zbl0864.03032
  27. [To] S. Todorčević, Remarks on chain conditions in products, Compositio Math. 5 (1985), 295-302. Zbl0583.54003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.