Remarks on chain conditions in products
Compositio Mathematica (1985)
- Volume: 55, Issue: 3, page 295-302
- ISSN: 0010-437X
Access Full Article
topHow to cite
topTodorčević, Stevo. "Remarks on chain conditions in products." Compositio Mathematica 55.3 (1985): 295-302. <http://eudml.org/doc/89722>.
@article{Todorčević1985,
author = {Todorčević, Stevo},
journal = {Compositio Mathematica},
keywords = {ccc; Souslin line; cellular family; Souslin numbers; Kurepa number; cellular number; non-finitely productive property; -chain condition; ZFC},
language = {eng},
number = {3},
pages = {295-302},
publisher = {Martinus Nijhoff Publishers},
title = {Remarks on chain conditions in products},
url = {http://eudml.org/doc/89722},
volume = {55},
year = {1985},
}
TY - JOUR
AU - Todorčević, Stevo
TI - Remarks on chain conditions in products
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 3
SP - 295
EP - 302
LA - eng
KW - ccc; Souslin line; cellular family; Souslin numbers; Kurepa number; cellular number; non-finitely productive property; -chain condition; ZFC
UR - http://eudml.org/doc/89722
ER -
References
top- [1] U. Avraham and S. Shelah: Martin's Axiom does not imply every two N1-dense sets of reals are isomorphic. Israel J. Math.38 (1980) 161-176. Zbl0457.03048MR599485
- [2] U. Avraham, M. Rubin and S. Shelah: On the consistency of some partition theorems for continuous colorings, and the structure of N1-dense real order types. Zbl0585.03019
- [3] J.E. Baumgartner: All N1-dense sets of reals can be isomorphic. Fund. Math.79 (1973) 101-106. Zbl0274.02037MR317934
- [4] J.E. Baumgartner: Order types of real numbers and other uncountable orderings. I. Rival (ed.), Ordered sets (1981) 239-277 (D. Reidel Publ. Co.). Zbl0506.04003MR661296
- [5] R. Bonnet: Sur les algèbres de Boole rigides, Thesis. Lyon: Université Claude-Bernard (1978).
- [6] W.W. Comfort and S. Negrepontis: Chain conditions in topology. (Cambridge: Cambridge University Press (1982)). Zbl0488.54002MR665100
- [7] W.G. Fleissner: Some spaces related to topological inequalities proved by the Erdös-Rado theorem. Proc. Amer. Math. Soc.71 (1978) 313-320. Zbl0411.54007MR493930
- [8] F. Galvin: Chain conditions and products. Fund. Math.108 (1980) 33-42. Zbl0366.04011MR585558
- [9] F. Galvin and S. Shelah: Some counterexamples in the partition calculus. J. Comb. TheoryA15 (1973) 157-174. Zbl0267.04006MR329900
- [10] K. Kuratowski: Topology I. Academic Press (1966). Zbl0158.40802MR217751
- [11] D. Kurepa: La condition de Soslin et une propriété caractéristique des nombres réels. Comp. Rendus (Paris) 231 (1950) 1113-1114. Zbl0040.16602MR38401
- [12] D. Kurepa: On an inequality concerning cartesian multiplication, Gen. Topology and its relations to Modern Analysis and Algebra. Proc. Symp. Prague (1961) 258-259. Zbl0111.18403MR175792
- [13] D. Kurepa: The cartesian multiplication and the cellularity number. Publ. Inst. Math.2(16) (1962) 121-139. Zbl0127.25003MR177894
- [14] E. Marczewski: Séparabilité et multiplication cartésienne des espaces topologiques. Fund. Math.34 (1947) 127-143. Zbl0032.19104MR21680
- [15] E. Michael: Paracompactness and the Lindelöf property in finite and countable cartesian products. Compositio Math.23 (1971) 199-214. Zbl0216.44304MR287502
- [16] W.J. Mitchell: Aronszajn trees and the independence of the transfer property. Ann. Math. Logic5 (1972) 21-46. Zbl0255.02069MR313057
- [17] J. Roitman: Adding a random or a Cohen real. Fund. Math.103 (1979) 47-60. Zbl0442.03034MR535835
- [18] W. Sierpiński: Sur un problème concernant les sous-ensembles croissants du continu. Fund. Math3 (1922) 109-112. Zbl48.0206.01JFM48.0206.01
- [19] W. Sierpiński: Sur un problème concernant les types de dimensions, Fund. Math.19 (1932) 65-71. Zbl0005.19702JFM58.0632.04
- [20] S. Todorčević: Chain conditions in products. Abstracts Amer. Math. Soc.4: 3 (1983) 291-232.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.