Loop spaces and homotopy operations

David Blanc

Fundamenta Mathematicae (1997)

  • Volume: 154, Issue: 1, page 75-95
  • ISSN: 0016-2736

Abstract

top
We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in π * X . These depend on first algebraically “delooping” the Π-algebras π * X , using the H-space structure on X, and then trying to realize the delooped Π-algebra.

How to cite

top

Blanc, David. "Loop spaces and homotopy operations." Fundamenta Mathematicae 154.1 (1997): 75-95. <http://eudml.org/doc/212228>.

@article{Blanc1997,
abstract = {We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in $π_*X$. These depend on first algebraically “delooping” the Π-algebras $π_*X$, using the H-space structure on X, and then trying to realize the delooped Π-algebra.},
author = {Blanc, David},
journal = {Fundamenta Mathematicae},
keywords = {loop space; topological group; H-space; Π-algebra; delooping; higher homotopy operations; obstruction theory; -space; -algebra; simplicial spaces},
language = {eng},
number = {1},
pages = {75-95},
title = {Loop spaces and homotopy operations},
url = {http://eudml.org/doc/212228},
volume = {154},
year = {1997},
}

TY - JOUR
AU - Blanc, David
TI - Loop spaces and homotopy operations
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 1
SP - 75
EP - 95
AB - We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in $π_*X$. These depend on first algebraically “delooping” the Π-algebras $π_*X$, using the H-space structure on X, and then trying to realize the delooped Π-algebra.
LA - eng
KW - loop space; topological group; H-space; Π-algebra; delooping; higher homotopy operations; obstruction theory; -space; -algebra; simplicial spaces
UR - http://eudml.org/doc/212228
ER -

References

top
  1. [A] J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford Ser. (2) 12 (1961), 52-60. Zbl0119.18701
  2. [B] H. J. Baues, Geometry of loop spaces and the cobar construction, Mem. Amer. Math. Soc. 230 (1980). Zbl0473.55009
  3. [Bl1] D. Blanc, A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318 (1990), 335-354. 
  4. [Bl2] D. Blanc, Abelian Π-algebras and their projective dimension, in: M. C. Tangora (ed.), Algebraic Topology: Oaxtepec 1991, Contemp. Math. 146, Amer. Math. Soc., Providence, R.I., 1993, 39-48. 
  5. [Bl3] D. Blanc, Higher homotopy operations and the realizability of homotopy groups, Proc. London Math. Soc. (3) 70 (1995), 214-240. Zbl0819.55005
  6. [Bl4] D. Blanc, Homotopy operations and the obstructions to being an H-space, Manuscripta Math. 88 (1995), 497-515. Zbl0851.55014
  7. [Bl5] D. Blanc, Homotopy operations and rational homotopy type, preprint, 1996. 
  8. [BV] J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math. 347, Springer, Berlin, 1973. Zbl0285.55012
  9. [BF] A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, in: M. G. Barratt and M. E. Mahowald (eds.), Geometric Applications of Homotopy Theory, II, Lecture Notes in Math. 658, Springer, Berlin, 1978, 80-130. 
  10. [BK] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions, and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972. Zbl0259.55004
  11. [BL] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335. Zbl0622.55009
  12. [C] E. B. Curtis, Simplicial homotopy theory, Adv. in Math. 6 (1971), 107-209. Zbl0225.55002
  13. [DL] A. Dold and R. K. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305. Zbl0088.15301
  14. [DHK] W. G. Dwyer, P. S. Hirschhorn and D. M. Kan, Model categories and more general abstract homotopy theory, preprint, 1996. 
  15. [DKS] W. G. Dwyer, D. M. Kan and J. H. Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989), 5-24. Zbl0678.55007
  16. [F] M. Fuchs, A modified Dold-Lashof construction that does classify H-principal fibrations, Math. Ann. (2) 192 (1971), 328-340. Zbl0205.27503
  17. [G] R. Godement, Topologie algébrique et théorie des faisceaux, Act. Sci. & Ind. 1252, Publ. Inst. Math. Univ. Strasbourg XIII, Hermann, Paris, 1964. Zbl0080.16201
  18. [H] P. J. Hilton, A remark on loop spaces, Proc. Amer. Math. Soc. 15 (1964), 596-600. Zbl0127.13502
  19. [Hi] P. S. Hirschhorn, Localization of model categories, preprint, 1996. 
  20. [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197. 
  21. [K] D. M. Kan, On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958), 38-53. Zbl0091.36902
  22. [Ka] R. M. Kane, The Homology of Hopf Spaces, North-Holland Math. Library 40, North-Holland, Amsterdam, 1988. 
  23. [M] S. MacLane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, Berlin, 1971. 
  24. [Ma1] J. P. May, Simplicial Objects in Algebraic Topology, Univ. Chicago Press, Chicago, 1967. 
  25. [Ma2] J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer, Berlin, 1972. 
  26. [Mi1] J. W. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 3 (1956), 272-284. Zbl0071.17302
  27. [Mi2] J. W. Milnor, On the construction FK, in: J. F. Adams (ed.), Algebraic Topology - A Student's Guide, London Math. Soc. Lecture Note Ser. 4, Cambridge Univ. Press, Cambridge, 1972, 119-136. 
  28. [N] J. A. Neisendorfer, Properties of certain H-spaces, Quart. J. Math. Oxford Ser. (2) 34 (1983), 201-209. Zbl0538.55005
  29. [Q1] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 20, Springer, Berlin, 1963. 
  30. [Q2] D. G. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155-156. Zbl0148.43105
  31. [RS] C. P. Rourke and B. J. Sanderson, Δ-sets I: Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1972), 321-338. 
  32. [S1] G. B. Segal, Classifying spaces and spectral sequences, Publ. Math. Inst. Hautes Etudes Sci. 34 (1968), 105-112. Zbl0199.26404
  33. [S2] G. B. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312. Zbl0284.55016
  34. [St1] J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275-292. 
  35. [St2] J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc., 293-312. 
  36. [St3] J. D. Stasheff, H-spaces from a Homotopy Point of View, Lecture Notes in Math. 161, Springer, Berlin, 1970. 
  37. [St4] J. D. Stasheff, H-spaces and classifying spaces: foundations and recent developments, in: A. Liulevicius (ed.), Algebraic Topology, Proc. Sympos. Pure Math. 22, Amer. Math. Soc., Providence, 1971, 247-272. 
  38. [Ste] N. E. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 349-368. Zbl0177.51601
  39. [Stv] C. R. Stover, A Van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), 9-26. Zbl0696.55017
  40. [Su] M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123-149. Zbl0091.37201
  41. [W] G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, Berlin, 1971. 
  42. [Z] A. Zabrodsky, Homotopy associativity and finite CW complexes, Topology 9 (1970), 121-128. Zbl0191.53901
  43. [Zi] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math. 152, Springer, Berlin, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.