Loop spaces and homotopy operations
Fundamenta Mathematicae (1997)
- Volume: 154, Issue: 1, page 75-95
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topBlanc, David. "Loop spaces and homotopy operations." Fundamenta Mathematicae 154.1 (1997): 75-95. <http://eudml.org/doc/212228>.
@article{Blanc1997,
abstract = {We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in $π_*X$. These depend on first algebraically “delooping” the Π-algebras $π_*X$, using the H-space structure on X, and then trying to realize the delooped Π-algebra.},
author = {Blanc, David},
journal = {Fundamenta Mathematicae},
keywords = {loop space; topological group; H-space; Π-algebra; delooping; higher homotopy operations; obstruction theory; -space; -algebra; simplicial spaces},
language = {eng},
number = {1},
pages = {75-95},
title = {Loop spaces and homotopy operations},
url = {http://eudml.org/doc/212228},
volume = {154},
year = {1997},
}
TY - JOUR
AU - Blanc, David
TI - Loop spaces and homotopy operations
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 1
SP - 75
EP - 95
AB - We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in $π_*X$. These depend on first algebraically “delooping” the Π-algebras $π_*X$, using the H-space structure on X, and then trying to realize the delooped Π-algebra.
LA - eng
KW - loop space; topological group; H-space; Π-algebra; delooping; higher homotopy operations; obstruction theory; -space; -algebra; simplicial spaces
UR - http://eudml.org/doc/212228
ER -
References
top- [A] J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford Ser. (2) 12 (1961), 52-60. Zbl0119.18701
- [B] H. J. Baues, Geometry of loop spaces and the cobar construction, Mem. Amer. Math. Soc. 230 (1980). Zbl0473.55009
- [Bl1] D. Blanc, A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318 (1990), 335-354.
- [Bl2] D. Blanc, Abelian Π-algebras and their projective dimension, in: M. C. Tangora (ed.), Algebraic Topology: Oaxtepec 1991, Contemp. Math. 146, Amer. Math. Soc., Providence, R.I., 1993, 39-48.
- [Bl3] D. Blanc, Higher homotopy operations and the realizability of homotopy groups, Proc. London Math. Soc. (3) 70 (1995), 214-240. Zbl0819.55005
- [Bl4] D. Blanc, Homotopy operations and the obstructions to being an H-space, Manuscripta Math. 88 (1995), 497-515. Zbl0851.55014
- [Bl5] D. Blanc, Homotopy operations and rational homotopy type, preprint, 1996.
- [BV] J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math. 347, Springer, Berlin, 1973. Zbl0285.55012
- [BF] A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, in: M. G. Barratt and M. E. Mahowald (eds.), Geometric Applications of Homotopy Theory, II, Lecture Notes in Math. 658, Springer, Berlin, 1978, 80-130.
- [BK] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions, and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972. Zbl0259.55004
- [BL] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335. Zbl0622.55009
- [C] E. B. Curtis, Simplicial homotopy theory, Adv. in Math. 6 (1971), 107-209. Zbl0225.55002
- [DL] A. Dold and R. K. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305. Zbl0088.15301
- [DHK] W. G. Dwyer, P. S. Hirschhorn and D. M. Kan, Model categories and more general abstract homotopy theory, preprint, 1996.
- [DKS] W. G. Dwyer, D. M. Kan and J. H. Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989), 5-24. Zbl0678.55007
- [F] M. Fuchs, A modified Dold-Lashof construction that does classify H-principal fibrations, Math. Ann. (2) 192 (1971), 328-340. Zbl0205.27503
- [G] R. Godement, Topologie algébrique et théorie des faisceaux, Act. Sci. & Ind. 1252, Publ. Inst. Math. Univ. Strasbourg XIII, Hermann, Paris, 1964. Zbl0080.16201
- [H] P. J. Hilton, A remark on loop spaces, Proc. Amer. Math. Soc. 15 (1964), 596-600. Zbl0127.13502
- [Hi] P. S. Hirschhorn, Localization of model categories, preprint, 1996.
- [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197.
- [K] D. M. Kan, On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958), 38-53. Zbl0091.36902
- [Ka] R. M. Kane, The Homology of Hopf Spaces, North-Holland Math. Library 40, North-Holland, Amsterdam, 1988.
- [M] S. MacLane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, Berlin, 1971.
- [Ma1] J. P. May, Simplicial Objects in Algebraic Topology, Univ. Chicago Press, Chicago, 1967.
- [Ma2] J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer, Berlin, 1972.
- [Mi1] J. W. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 3 (1956), 272-284. Zbl0071.17302
- [Mi2] J. W. Milnor, On the construction FK, in: J. F. Adams (ed.), Algebraic Topology - A Student's Guide, London Math. Soc. Lecture Note Ser. 4, Cambridge Univ. Press, Cambridge, 1972, 119-136.
- [N] J. A. Neisendorfer, Properties of certain H-spaces, Quart. J. Math. Oxford Ser. (2) 34 (1983), 201-209. Zbl0538.55005
- [Q1] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 20, Springer, Berlin, 1963.
- [Q2] D. G. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155-156. Zbl0148.43105
- [RS] C. P. Rourke and B. J. Sanderson, Δ-sets I: Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1972), 321-338.
- [S1] G. B. Segal, Classifying spaces and spectral sequences, Publ. Math. Inst. Hautes Etudes Sci. 34 (1968), 105-112. Zbl0199.26404
- [S2] G. B. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312. Zbl0284.55016
- [St1] J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
- [St2] J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc., 293-312.
- [St3] J. D. Stasheff, H-spaces from a Homotopy Point of View, Lecture Notes in Math. 161, Springer, Berlin, 1970.
- [St4] J. D. Stasheff, H-spaces and classifying spaces: foundations and recent developments, in: A. Liulevicius (ed.), Algebraic Topology, Proc. Sympos. Pure Math. 22, Amer. Math. Soc., Providence, 1971, 247-272.
- [Ste] N. E. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 349-368. Zbl0177.51601
- [Stv] C. R. Stover, A Van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), 9-26. Zbl0696.55017
- [Su] M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123-149. Zbl0091.37201
- [W] G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, Berlin, 1971.
- [Z] A. Zabrodsky, Homotopy associativity and finite CW complexes, Topology 9 (1970), 121-128. Zbl0191.53901
- [Zi] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math. 152, Springer, Berlin, 1995.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.