Branched coverings and cubic Newton maps
Fundamenta Mathematicae (1997)
- Volume: 154, Issue: 3, page 207-260
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topTan, Lei. "Branched coverings and cubic Newton maps." Fundamenta Mathematicae 154.3 (1997): 207-260. <http://eudml.org/doc/212236>.
@article{Tan1997,
abstract = {We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).},
author = {Tan, Lei},
journal = {Fundamenta Mathematicae},
keywords = {cubic Newton map; branched covering; critically finite; matings and captures},
language = {eng},
number = {3},
pages = {207-260},
title = {Branched coverings and cubic Newton maps},
url = {http://eudml.org/doc/212236},
volume = {154},
year = {1997},
}
TY - JOUR
AU - Tan, Lei
TI - Branched coverings and cubic Newton maps
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 3
SP - 207
EP - 260
AB - We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).
LA - eng
KW - cubic Newton map; branched covering; critically finite; matings and captures
UR - http://eudml.org/doc/212236
ER -
References
top- [B] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141. Zbl0558.58017
- [CGS] J. Curry, L. Garnett and D. Sullivan, On the iteration of rational functions: Computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277. Zbl0524.65032
- [D1] A. Douady, Systèmes dynamiques holomorphes, Séminaire Bourbaki, 35e année, 1982-1983, exp. no. 599, 1982.
- [D2] A. Douady, Algorithm for computing angles in the Mandelbrot set, in: Chaotic Dynamics and Fractals, M. F. Barnsley and S. G. Demko (eds.), Academic Press, New York, 1986, 155-168.
- [D3] A. Douady, Chirurgie sur les applications holomorphes, in: Proc. Internat. Congress Math., Berkeley, Calif., 1986, 724-738 (English version: preprint MSRI, 1986).
- [DH1] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes, I et II, avec la collaboration de P. Lavaurs, Tan Lei et P. Sentenac, Publication d'Orsay 84-02, 85-04, 1984/1985.
- [DH2] A. Douady et J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), 263-297. Zbl0806.30027
- [DH3] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343. Zbl0587.30028
- [F] D. Faught, Local connectivity in a family of cubic polynomials, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1992.
- [Ha] F. von Haeseler, Über Attraktionsgebiete superattraktiver Zykle, Ph.D. thesis, Bremen Univ., Bremen, 1985.
- [HP] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58. Zbl0671.30023
- [He] J. Head, The combinatorics of Newton's method for cubic polynomials, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1987.
- [Le] S. Levy, Critically finite rational maps, Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1985.
- [Me] H.-G. Meier, On the connectedness of the Julia-set for rational functions, preprint, Aachen Univ., 1989.
- [M1] J. Milnor, On cubic polynomials with periodic critical point (very rough draft), 5-28-91.
- [M2] J. Milnor, Dynamics in one complex variable: Introductory lectures, preprint Stony Brook 1990-5.
- [Prz] F. Przytycki, Remarks on the simple connectedness of basins of sinks for iterations of rational maps, in: Dynamical Systems and Ergodic Theory, K. Krzyżewski (ed.), PWN-Polish Sci. Publ., 1989, 229-235.
- [R1] M. Rees, A partial description of parameter space of rational maps of degree two: Part I, Acta Math. 168 (1992), 11-87.
- [R2] M. Rees, A partial description of parameter space of rational maps of degree two: Part II, Proc. London Math. Soc. (3) 70 (1995), 644-690. Zbl0827.58048
- [R3] M. Rees, Realization of matings of polynomials as rational maps of degree two, manuscript, 1986.
- [Sa] D. Saupe, Discrete versus continuous Newton's method: A case study, Acta Appl. Math. 13 (1988), 59-80. Zbl0669.65037
- [Sh1] M. Shishikura, The connectivity of the Julia set of rational maps and Fixed points, preprint, I.H.E.S., Bures-sur-Yvette, 1990.
- [Sh2] M. Shishikura, On a theorem of M. Rees for matings of polynomials, preprint, I.H.E.S., Bures-sur-Yvette, 1990.
- [ST] M. Shishikura and L. Tan, A family of cubic rational maps and matings of cubic polynomials, preprint 88-50, Max-Planck-Institut für Mathematik, Bonn. Zbl0969.37020
- [Ta] L. Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), 589-620. Zbl0756.58024
- [TY] L. Tan and Y. C. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. in China (Ser. A) 39 (1) (1996), 39-47. Zbl0858.30021
- [Th] W. Thurston, The combinatorics of iterated rational maps, preprint, Princeton Univ., Princeton, N.J., 1983.
- [W] B. Wittner, On the bifurcation loci of rational maps of degree two, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1986.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.