Branched coverings and cubic Newton maps

Lei Tan

Fundamenta Mathematicae (1997)

  • Volume: 154, Issue: 3, page 207-260
  • ISSN: 0016-2736

Abstract

top
We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).

How to cite

top

Tan, Lei. "Branched coverings and cubic Newton maps." Fundamenta Mathematicae 154.3 (1997): 207-260. <http://eudml.org/doc/212236>.

@article{Tan1997,
abstract = {We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).},
author = {Tan, Lei},
journal = {Fundamenta Mathematicae},
keywords = {cubic Newton map; branched covering; critically finite; matings and captures},
language = {eng},
number = {3},
pages = {207-260},
title = {Branched coverings and cubic Newton maps},
url = {http://eudml.org/doc/212236},
volume = {154},
year = {1997},
}

TY - JOUR
AU - Tan, Lei
TI - Branched coverings and cubic Newton maps
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 3
SP - 207
EP - 260
AB - We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).
LA - eng
KW - cubic Newton map; branched covering; critically finite; matings and captures
UR - http://eudml.org/doc/212236
ER -

References

top
  1. [B] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141. Zbl0558.58017
  2. [CGS] J. Curry, L. Garnett and D. Sullivan, On the iteration of rational functions: Computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277. Zbl0524.65032
  3. [D1] A. Douady, Systèmes dynamiques holomorphes, Séminaire Bourbaki, 35e année, 1982-1983, exp. no. 599, 1982. 
  4. [D2] A. Douady, Algorithm for computing angles in the Mandelbrot set, in: Chaotic Dynamics and Fractals, M. F. Barnsley and S. G. Demko (eds.), Academic Press, New York, 1986, 155-168. 
  5. [D3] A. Douady, Chirurgie sur les applications holomorphes, in: Proc. Internat. Congress Math., Berkeley, Calif., 1986, 724-738 (English version: preprint MSRI, 1986). 
  6. [DH1] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes, I et II, avec la collaboration de P. Lavaurs, Tan Lei et P. Sentenac, Publication d'Orsay 84-02, 85-04, 1984/1985. 
  7. [DH2] A. Douady et J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), 263-297. Zbl0806.30027
  8. [DH3] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343. Zbl0587.30028
  9. [F] D. Faught, Local connectivity in a family of cubic polynomials, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1992. 
  10. [Ha] F. von Haeseler, Über Attraktionsgebiete superattraktiver Zykle, Ph.D. thesis, Bremen Univ., Bremen, 1985. 
  11. [HP] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58. Zbl0671.30023
  12. [He] J. Head, The combinatorics of Newton's method for cubic polynomials, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1987. 
  13. [Le] S. Levy, Critically finite rational maps, Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1985. 
  14. [Me] H.-G. Meier, On the connectedness of the Julia-set for rational functions, preprint, Aachen Univ., 1989. 
  15. [M1] J. Milnor, On cubic polynomials with periodic critical point (very rough draft), 5-28-91. 
  16. [M2] J. Milnor, Dynamics in one complex variable: Introductory lectures, preprint Stony Brook 1990-5. 
  17. [Prz] F. Przytycki, Remarks on the simple connectedness of basins of sinks for iterations of rational maps, in: Dynamical Systems and Ergodic Theory, K. Krzyżewski (ed.), PWN-Polish Sci. Publ., 1989, 229-235. 
  18. [R1] M. Rees, A partial description of parameter space of rational maps of degree two: Part I, Acta Math. 168 (1992), 11-87. 
  19. [R2] M. Rees, A partial description of parameter space of rational maps of degree two: Part II, Proc. London Math. Soc. (3) 70 (1995), 644-690. Zbl0827.58048
  20. [R3] M. Rees, Realization of matings of polynomials as rational maps of degree two, manuscript, 1986. 
  21. [Sa] D. Saupe, Discrete versus continuous Newton's method: A case study, Acta Appl. Math. 13 (1988), 59-80. Zbl0669.65037
  22. [Sh1] M. Shishikura, The connectivity of the Julia set of rational maps and Fixed points, preprint, I.H.E.S., Bures-sur-Yvette, 1990. 
  23. [Sh2] M. Shishikura, On a theorem of M. Rees for matings of polynomials, preprint, I.H.E.S., Bures-sur-Yvette, 1990. 
  24. [ST] M. Shishikura and L. Tan, A family of cubic rational maps and matings of cubic polynomials, preprint 88-50, Max-Planck-Institut für Mathematik, Bonn. Zbl0969.37020
  25. [Ta] L. Tan, Matings of quadratic polynomials, Ergodic Theory Dynam. Systems 12 (1992), 589-620. Zbl0756.58024
  26. [TY] L. Tan and Y. C. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. in China (Ser. A) 39 (1) (1996), 39-47. Zbl0858.30021
  27. [Th] W. Thurston, The combinatorics of iterated rational maps, preprint, Princeton Univ., Princeton, N.J., 1983. 
  28. [W] B. Wittner, On the bifurcation loci of rational maps of degree two, Ph.D. thesis, Cornell Univ., Ithaca, N.Y., 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.