# From Newton’s method to exotic basins Part I: The parameter space

Fundamenta Mathematicae (1998)

- Volume: 158, Issue: 3, page 249-288
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topBarański, Krzysztof. "From Newton’s method to exotic basins Part I: The parameter space." Fundamenta Mathematicae 158.3 (1998): 249-288. <http://eudml.org/doc/212315>.

@article{Barański1998,

abstract = {This is the first part of the work studying the family $\mathfrak \{F\}$ of all rational maps of degree three with two superattracting fixed points. We determine the topological type of the moduli space of $\mathfrak \{F\}$ and give a detailed study of the subfamily $ℱ_2$ consisting of maps with a critical point which is periodic of period 2. In particular, we describe a parabolic bifurcation in $ℱ_2$ from Newton maps to maps with so-called exotic basins.},

author = {Barański, Krzysztof},

journal = {Fundamenta Mathematicae},

keywords = {superattracting fixed points; moduli space; exotic basins; Julia sets; bifurcations; rational maps; Newton maps; parabolic bifurcation; Mandelbrot-like sets},

language = {eng},

number = {3},

pages = {249-288},

title = {From Newton’s method to exotic basins Part I: The parameter space},

url = {http://eudml.org/doc/212315},

volume = {158},

year = {1998},

}

TY - JOUR

AU - Barański, Krzysztof

TI - From Newton’s method to exotic basins Part I: The parameter space

JO - Fundamenta Mathematicae

PY - 1998

VL - 158

IS - 3

SP - 249

EP - 288

AB - This is the first part of the work studying the family $\mathfrak {F}$ of all rational maps of degree three with two superattracting fixed points. We determine the topological type of the moduli space of $\mathfrak {F}$ and give a detailed study of the subfamily $ℱ_2$ consisting of maps with a critical point which is periodic of period 2. In particular, we describe a parabolic bifurcation in $ℱ_2$ from Newton maps to maps with so-called exotic basins.

LA - eng

KW - superattracting fixed points; moduli space; exotic basins; Julia sets; bifurcations; rational maps; Newton maps; parabolic bifurcation; Mandelbrot-like sets

UR - http://eudml.org/doc/212315

ER -

## References

top- [Ba] K. Barański, Connectedness of the basin of attraction for rational maps, Proc. Amer. Math. Soc. (6) 126 (1998), 1857-1866. Zbl0898.58043
- [BH] B. Branner and J. Hubbard, The iteration of cubic polynomials, II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325. Zbl0812.30008
- [CGS] J. H. Curry, L. Garnett and D. Sullivan, On the iteration of a rational function: computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277. Zbl0524.65032
- [DH1] A. Douady et J. H. Hubbard, Etude dynamique des polynômes complexes, I et II, avec la collaboration de P. Lavours, Tan Lei et P. Sentenac, Publication d'Orsay 84-02, 85-04, 1984-1985.
- [DH2] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343. Zbl0587.30028
- [HP] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58. Zbl0671.30023
- [He] J. Head, The combinatorics of Newton's method for cubic polynomials, Ph.D. thesis, Cornell University, Ithaca, 1987.
- [MSS] R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), 193-217.
- [Mi1] J. Milnor, Dynamics in one complex variable: introductory lectures, preprint, SUNY at Stony Brook, IMS # 1990/5.
- [Mi2] J. Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), 37-83. Zbl0922.58062
- [P1] F. Przytycki, Iterations of rational functions: which hyperbolic components contain polynomials?, Fund. Math. 149 (1996), 95-118. Zbl0852.58052
- [P2] F. Przytycki, Remarks on simple-connectedness of basins of sinks for iterations of rational maps, in: Banach Center Publ. 23, PWN, 1989, 229-235.
- [Re1] M. Rees, A partial description of parameter space of rational maps of degree two, I: Acta Math. 168 (1992), 11-87; II: Proc. London Math. Soc. (3) 70 (1995), 644-690. Zbl0774.58035
- [Re2] M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990), 357-382. Zbl0712.30022
- [Ro] P. Roesch, Topologie locale des méthodes de Newton cubiques, Ph.D. thesis, École Norm. Sup. de Lyon, 1997.
- [Se] G. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72. Zbl0427.55006
- [Sh] M. Shishikura, The connectivity of the Julia set of rational maps and fixed points, preprint, Inst. Hautes Études Sci., Bures-sur-Yvette, 1990.
- [Ta] Tan, Branched coverings and cubic Newton maps, Fund. Math. 154 (1997), 207-260. Zbl0903.58029