# A functional S-dual in a strong shape category

Fundamenta Mathematicae (1997)

- Volume: 154, Issue: 3, page 261-274
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topBauer, Friedrich. "A functional S-dual in a strong shape category." Fundamenta Mathematicae 154.3 (1997): 261-274. <http://eudml.org/doc/212237>.

@article{Bauer1997,

abstract = {In the S-category $\{P\}$ (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual $DX, X = (X,n) ∈ \{P\}$, turns out to be of the same weak homotopy type as an appropriately defined functional dual $\overline\{(S^0)^X\}$ (Corollary 4.9). Sometimes the functional object $\overline\{X^Y\}$ is of the same weak homotopy type as the “real” function space $X^Y$ (§5).},

author = {Bauer, Friedrich},

journal = {Fundamenta Mathematicae},

keywords = {S-duality; functional S-dual; virtual spaces; weak homotopy type; compact-open strong shape; -duality},

language = {eng},

number = {3},

pages = {261-274},

title = {A functional S-dual in a strong shape category},

url = {http://eudml.org/doc/212237},

volume = {154},

year = {1997},

}

TY - JOUR

AU - Bauer, Friedrich

TI - A functional S-dual in a strong shape category

JO - Fundamenta Mathematicae

PY - 1997

VL - 154

IS - 3

SP - 261

EP - 274

AB - In the S-category ${P}$ (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual $DX, X = (X,n) ∈ {P}$, turns out to be of the same weak homotopy type as an appropriately defined functional dual $\overline{(S^0)^X}$ (Corollary 4.9). Sometimes the functional object $\overline{X^Y}$ is of the same weak homotopy type as the “real” function space $X^Y$ (§5).

LA - eng

KW - S-duality; functional S-dual; virtual spaces; weak homotopy type; compact-open strong shape; -duality

UR - http://eudml.org/doc/212237

ER -

## References

top- [1] F. W. Bauer, A strong shape theory admitting an S-dual, Topology Appl. 62 (1995), 207-232. Zbl0852.55010
- [2] F. W. Bauer, A strong shape theory with S-duality, Fund. Math. 154 (1997), 37-56. Zbl0883.55008
- [3] F. W. Bauer, Duality in manifolds, Ann. Mat. Pura Appl. (4) 136 (1984), 241-302. Zbl0564.55001
- [4] J. M. Cohen, Stable Homotopy, Lecture Notes in Math. 165, Springer, Heidelberg, 1970.
- [5] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [6] B. Günther, The use of semisimplicial complexes in strong shape theory, Glas. Mat. 27 (47) (1992), 101-144. Zbl0781.55006
- [7] E. Spanier, Function spaces and duality, Ann. of Math. 70 (1959), 338-378. Zbl0090.12905
- [8] H. Thiemann, Strong shape and fibrations, Glas. Mat. 30 (50) (1995), 135-174. Zbl0870.55007

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.