The sequential topology on complete Boolean algebras
Wiesław Główczyński; Bohuslav Balcar; Thomas Jech
Fundamenta Mathematicae (1998)
- Volume: 155, Issue: 1, page 59-78
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topGłówczyński, Wiesław, Balcar, Bohuslav, and Jech, Thomas. "The sequential topology on complete Boolean algebras." Fundamenta Mathematicae 155.1 (1998): 59-78. <http://eudml.org/doc/212243>.
@article{Główczyński1998,
abstract = {We investigate the sequential topology $τ_\{s\}$ on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space $(B,τ_\{s\})$ is Hausdorff. We also characterize sequential cardinals.},
author = {Główczyński, Wiesław, Balcar, Bohuslav, Jech, Thomas},
journal = {Fundamenta Mathematicae},
keywords = {complete Boolean algebra; sequential topology; Maharam submeasure; sequential cardinal; Maharam submeasures},
language = {eng},
number = {1},
pages = {59-78},
title = {The sequential topology on complete Boolean algebras},
url = {http://eudml.org/doc/212243},
volume = {155},
year = {1998},
}
TY - JOUR
AU - Główczyński, Wiesław
AU - Balcar, Bohuslav
AU - Jech, Thomas
TI - The sequential topology on complete Boolean algebras
JO - Fundamenta Mathematicae
PY - 1998
VL - 155
IS - 1
SP - 59
EP - 78
AB - We investigate the sequential topology $τ_{s}$ on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space $(B,τ_{s})$ is Hausdorff. We also characterize sequential cardinals.
LA - eng
KW - complete Boolean algebra; sequential topology; Maharam submeasure; sequential cardinal; Maharam submeasures
UR - http://eudml.org/doc/212243
ER -
References
top- [AnCh] M. Antonovskiĭ and D. Chudnovsky, Some questions of general topology and Tikhonov semifields II, Russian Math. Surveys 31 (1976), 69-128.
- [BlJe] A. Blass and T. Jech, On the Egoroff property of pointwise convergent sequences of functions, Proc. Amer. Math. Soc. 98 (1986), 524-526. Zbl0601.54004
- [En] R. Engelking, General Topology, 2nd ed., PWN, Warszawa, 1985.
- [Fr0] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
- [Fr1] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989, 877-980.
- [Fr2] D. H. Fremlin, Real-valued measurable cardinals, in: Set Theory of the Reals, H. Judah (ed.), Amer. Math. Soc., 1993, 151-304.
- [Gł] W. Główczyński, Measures on Boolean algebras, Proc. Amer. Math. Soc. 111 (1991), 845-849. Zbl0718.03041
- [HeRo] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer, 1963. Zbl0115.10603
- [Je] T. Jech, Set Theory, Academic Press, 1978.
- [KeTa] H. J. Keisler and A. Tarski, From accessible to inaccessible cardinals, Fund. Math. 53 (1964), 225-308. Zbl0173.00802
- [Ke] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177. Zbl0087.04801
- [Ko] S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of Handbook of Boolean Algebras, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989.
- [Ma] D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. 48 (1947), 154-167. Zbl0029.20401
- [Na] K. Namba, Independence proof of -WDL from (ω,ω)-WDL, Comment. Math. Univ. St. Paul. 21 (2) (1972), 47-53.
- [Pl] G. Plebanek, Remarks on measurable Boolean algebras and sequential cardinals, Fund. Math. 143 (1993), 11-22. Zbl0788.28003
- [Pr] K. Prikry, On σ-complete prime ideals in Boolean algebras, Colloq. Math. 22 (1971), 209-214. Zbl0252.06011
- [Ro] F. Rothberger, On families of real functions with a denumerable base, Ann. of Math. 45 (1944), 397-406. Zbl0061.09507
- [To] S. Todorčević, Some partitions of three-dimensional combinatorial cubes, J. Combin. Theory Ser. A 68 (1994), 410-437. Zbl0812.03022
- [Tr] V. Trnková, Non-F-topologies, PhD thesis, Prague, 1961 (in Czech).
- [Vl] D. A. Vladimirov, Boolean Algebras, Nauka, Moscow, 1969 (in Russian).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.