Convergence and submeasures in Boolean algebras
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 4, page 503-511
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJech, Tomáš. "Convergence and submeasures in Boolean algebras." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 503-511. <http://eudml.org/doc/294468>.
@article{Jech2018,
abstract = {A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.},
author = {Jech, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Boolean algebra; exhaustive submeasure; sequential topology; uniformly Fréchet topology},
language = {eng},
number = {4},
pages = {503-511},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convergence and submeasures in Boolean algebras},
url = {http://eudml.org/doc/294468},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Jech, Tomáš
TI - Convergence and submeasures in Boolean algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 503
EP - 511
AB - A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.
LA - eng
KW - Boolean algebra; exhaustive submeasure; sequential topology; uniformly Fréchet topology
UR - http://eudml.org/doc/294468
ER -
References
top- Balcar B., Główczyński W., Jech T., The sequential topology on complete Boolean algebras, Fund. Math. 155 (1998), no. 1, 59–78. MR1487988
- Balcar B., Franek F., Hruška J., Exhaustive zero-convergence structures on Boolean algebras, Acta Univ. Carolin. Math. Phys. 40 (1999), no. 2, 27–41. MR1751539
- Balcar B., Jech T., Pazák T., 10.1112/S0024609305004807, Bull. London Math. Soc. 37 (2005), no. 6, 885–898. MR2186722DOI10.1112/S0024609305004807
- Balcar B., Jech T., 10.2178/bsl/1146620061, Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl1120.03028MR2223923DOI10.2178/bsl/1146620061
- Balcar B., Jech T., Contributions to the theory of weakly distributive complete Boolean algebras, Andrzej Mostowski and foundational studies, IOS, Amsterdam, 2008, pages 144–150. MR2422684
- Fremlin D. H., Measure Algebras, Handbook of Boolean Algebras, 3, North-Holland Publishing, Amsterdam, 1989. MR0991611
- Gaifman H., 10.2140/pjm.1964.14.61, Pacific J. Math. 14 (1964), 61–73. Zbl0127.02306MR0161952DOI10.2140/pjm.1964.14.61
- Horn A., Tarski A., 10.1090/S0002-9947-1948-0028922-8, Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl0035.03001MR0028922DOI10.1090/S0002-9947-1948-0028922-8
- Jech T., Non-provability of Souslin's hypothesis, Comment. Math. Univ. Carolinae 8 (1967), no. 2, 291–305. MR0215729
- Jech T., 10.1090/S0002-9939-07-09184-8, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1285–1294. MR2367102DOI10.1090/S0002-9939-07-09184-8
- Jech T., 10.4064/fm352-1-2017, Fund. Math. 239 (2017), no. 2, 177–183. MR3681586DOI10.4064/fm352-1-2017
- Kalton N., The Maharam Problem, Publ. Math. Univ. Pierre et Marie Curie, 94, Univ. Paris VI, Paris, 1989. MR1107322
- Kalton N. J., Roberts J. W., 10.1090/S0002-9947-1983-0701524-4, Trans. Amer. Math. Soc. 278 (1983), 803–816. MR0701524DOI10.1090/S0002-9947-1983-0701524-4
- Kantorovič L. V., Vulih B. Z., Pinsker A. G., Functional Analysis in Partially Ordered Spaces, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva, 1950 (Russian). MR0038006
- Kelley J. L., 10.2140/pjm.1959.9.1165, Pacific J. Math. 9 (1959), 1165–1177. MR0108570DOI10.2140/pjm.1959.9.1165
- Maharam D., 10.2307/1969222, Ann. of Math. (2) 48 (1947), 154–167. MR0018718DOI10.2307/1969222
- Mauldin D., ed., The Scottish Book, Birkhäuser, Boston, 1981. MR0666400
- Monk J. D., Bonnet R., eds., Handbook of Boolean algebras,, North-Holland Publishing, Amsterdam, 1989. MR0991601
- Solovay R. M., Tennenbaum S., 10.2307/1970860, Ann. of Math. (2) 94 (1971), 201–245. MR0294139DOI10.2307/1970860
- Suslin M., 10.4064/fm-1-1-223-224, Fund. Math. 1 (1920), 223. DOI10.4064/fm-1-1-223-224
- Talagrand M., 10.1007/BF01420116, Math. Ann. 252 (1979/80), no. 2, 97–102. MR0593624DOI10.1007/BF01420116
- Talagrand M., 10.4007/annals.2008.168.981, Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl1185.28002MR2456888DOI10.4007/annals.2008.168.981
- Tennenbaum S., 10.1073/pnas.59.1.60, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60–63. MR0224456DOI10.1073/pnas.59.1.60
- Todorčević S., A dichotomy for P-ideals of countable sets, Fund. Math. 166 (2000), no. 3, 251–267. MR1809418
- Todorcevic S., 10.4064/fm183-2-7, Fund. Math. 183 (2004), no. 2, 169–183. Zbl1071.28004MR2127965DOI10.4064/fm183-2-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.