Convergence and submeasures in Boolean algebras

Tomáš Jech

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 4, page 503-511
  • ISSN: 0010-2628

Abstract

top
A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.

How to cite

top

Jech, Tomáš. "Convergence and submeasures in Boolean algebras." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 503-511. <http://eudml.org/doc/294468>.

@article{Jech2018,
abstract = {A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.},
author = {Jech, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Boolean algebra; exhaustive submeasure; sequential topology; uniformly Fréchet topology},
language = {eng},
number = {4},
pages = {503-511},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convergence and submeasures in Boolean algebras},
url = {http://eudml.org/doc/294468},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Jech, Tomáš
TI - Convergence and submeasures in Boolean algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 503
EP - 511
AB - A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.
LA - eng
KW - Boolean algebra; exhaustive submeasure; sequential topology; uniformly Fréchet topology
UR - http://eudml.org/doc/294468
ER -

References

top
  1. Balcar B., Główczyński W., Jech T., The sequential topology on complete Boolean algebras, Fund. Math. 155 (1998), no. 1, 59–78. MR1487988
  2. Balcar B., Franek F., Hruška J., Exhaustive zero-convergence structures on Boolean algebras, Acta Univ. Carolin. Math. Phys. 40 (1999), no. 2, 27–41. MR1751539
  3. Balcar B., Jech T., Pazák T., 10.1112/S0024609305004807, Bull. London Math. Soc. 37 (2005), no. 6, 885–898. MR2186722DOI10.1112/S0024609305004807
  4. Balcar B., Jech T., 10.2178/bsl/1146620061, Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl1120.03028MR2223923DOI10.2178/bsl/1146620061
  5. Balcar B., Jech T., Contributions to the theory of weakly distributive complete Boolean algebras, Andrzej Mostowski and foundational studies, IOS, Amsterdam, 2008, pages 144–150. MR2422684
  6. Fremlin D. H., Measure Algebras, Handbook of Boolean Algebras, 3, North-Holland Publishing, Amsterdam, 1989. MR0991611
  7. Gaifman H., 10.2140/pjm.1964.14.61, Pacific J. Math. 14 (1964), 61–73. Zbl0127.02306MR0161952DOI10.2140/pjm.1964.14.61
  8. Horn A., Tarski A., 10.1090/S0002-9947-1948-0028922-8, Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl0035.03001MR0028922DOI10.1090/S0002-9947-1948-0028922-8
  9. Jech T., Non-provability of Souslin's hypothesis, Comment. Math. Univ. Carolinae 8 (1967), no. 2, 291–305. MR0215729
  10. Jech T., 10.1090/S0002-9939-07-09184-8, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1285–1294. MR2367102DOI10.1090/S0002-9939-07-09184-8
  11. Jech T., 10.4064/fm352-1-2017, Fund. Math. 239 (2017), no. 2, 177–183. MR3681586DOI10.4064/fm352-1-2017
  12. Kalton N., The Maharam Problem, Publ. Math. Univ. Pierre et Marie Curie, 94, Univ. Paris VI, Paris, 1989. MR1107322
  13. Kalton N. J., Roberts J. W., 10.1090/S0002-9947-1983-0701524-4, Trans. Amer. Math. Soc. 278 (1983), 803–816. MR0701524DOI10.1090/S0002-9947-1983-0701524-4
  14. Kantorovič L. V., Vulih B. Z., Pinsker A. G., Functional Analysis in Partially Ordered Spaces, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva, 1950 (Russian). MR0038006
  15. Kelley J. L., 10.2140/pjm.1959.9.1165, Pacific J. Math. 9 (1959), 1165–1177. MR0108570DOI10.2140/pjm.1959.9.1165
  16. Maharam D., 10.2307/1969222, Ann. of Math. (2) 48 (1947), 154–167. MR0018718DOI10.2307/1969222
  17. Mauldin D., ed., The Scottish Book, Birkhäuser, Boston, 1981. MR0666400
  18. Monk J. D., Bonnet R., eds., Handbook of Boolean algebras,, North-Holland Publishing, Amsterdam, 1989. MR0991601
  19. Solovay R. M., Tennenbaum S., 10.2307/1970860, Ann. of Math. (2) 94 (1971), 201–245. MR0294139DOI10.2307/1970860
  20. Suslin M., 10.4064/fm-1-1-223-224, Fund. Math. 1 (1920), 223. DOI10.4064/fm-1-1-223-224
  21. Talagrand M., 10.1007/BF01420116, Math. Ann. 252 (1979/80), no. 2, 97–102. MR0593624DOI10.1007/BF01420116
  22. Talagrand M., 10.4007/annals.2008.168.981, Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl1185.28002MR2456888DOI10.4007/annals.2008.168.981
  23. Tennenbaum S., 10.1073/pnas.59.1.60, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60–63. MR0224456DOI10.1073/pnas.59.1.60
  24. Todorčević S., A dichotomy for P-ideals of countable sets, Fund. Math. 166 (2000), no. 3, 251–267. MR1809418
  25. Todorcevic S., 10.4064/fm183-2-7, Fund. Math. 183 (2004), no. 2, 169–183. Zbl1071.28004MR2127965DOI10.4064/fm183-2-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.