Distinguishing two partition properties of ω1

Péter Komjáth

Fundamenta Mathematicae (1998)

  • Volume: 155, Issue: 1, page 95-99
  • ISSN: 0016-2736

Abstract

top
It is consistent that ω 1 ( ω 1 , ( ω : 2 ) ) 2 but ω 1 ( ω 1 , ω + 2 ) 2 .

How to cite

top

Komjáth, Péter. "Distinguishing two partition properties of ω1." Fundamenta Mathematicae 155.1 (1998): 95-99. <http://eudml.org/doc/212246>.

@article{Komjáth1998,
abstract = {It is consistent that $ω_1→(ω_1,(ω:2))^2$ but $ω_1↛(ω_1,ω+2)^2$.},
author = {Komjáth, Péter},
journal = {Fundamenta Mathematicae},
keywords = {partition calculus; ; iterated forcing; partition relations},
language = {eng},
number = {1},
pages = {95-99},
title = {Distinguishing two partition properties of ω1},
url = {http://eudml.org/doc/212246},
volume = {155},
year = {1998},
}

TY - JOUR
AU - Komjáth, Péter
TI - Distinguishing two partition properties of ω1
JO - Fundamenta Mathematicae
PY - 1998
VL - 155
IS - 1
SP - 95
EP - 99
AB - It is consistent that $ω_1→(ω_1,(ω:2))^2$ but $ω_1↛(ω_1,ω+2)^2$.
LA - eng
KW - partition calculus; ; iterated forcing; partition relations
UR - http://eudml.org/doc/212246
ER -

References

top
  1. [1] J. E. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 (1973), 193-203. Zbl0257.02054
  2. [2] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982. 
  3. [3] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. Zbl0025.31002
  4. [4] P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489. Zbl0071.05105
  5. [5] A. Hajnal, Some results and problems on set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277-298. Zbl0106.00901
  6. [6] S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720. Zbl0532.03023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.