Displaying similar documents to “Distinguishing two partition properties of ω1”

On partitions of lines and space

Paul Erdös, Steve Jackson, R. Mauldin (1994)

Fundamenta Mathematicae

Similarity:

We consider a set, L, of lines in n and a partition of L into some number of sets: L = L 1 . . . L p . We seek a corresponding partition n = S 1 . . . S p such that each line l in L i meets the set S i in a set whose cardinality has some fixed bound, ω τ . We determine equivalences between the bounds on the size of the continuum, 2 ω ω θ , and some relationships between p, ω τ and ω θ .

Countable partitions of the sets of points and lines

James Schmerl (1999)

Fundamenta Mathematicae

Similarity:

The following theorem is proved, answering a question raised by Davies in 1963. If L 0 L 1 L 2 . . . is a partition of the set of lines of n , then there is a partition n = S 0 S 1 S 2 . . . such that | S i | 2 whenever L i . There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson Mauldin.

The minimum uniform compactification of a metric space

R. Grant Woods (1995)

Fundamenta Mathematicae

Similarity:

It is shown that associated with each metric space (X,d) there is a compactification u d X of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of u d X are presented, and a detailed study of the structure of u d X is undertaken. This culminates in a topological characterization of the outgrowth u d n n , where ( n , d ) is Euclidean n-space with its usual metric. ...

The space of ANR’s in n

Tadeusz Dobrowolski, Leonard Rubin (1994)

Fundamenta Mathematicae

Similarity:

The hyperspaces A N R ( n ) and A R ( n ) in 2 n ( n 3 ) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute G δ σ δ -spaces and that, indeed, they are not F σ δ σ -spaces. The main result is that A N R ( n ) is an absorber for the class of all absolute G δ σ δ -spaces and is therefore homeomorphic to the standard model space Ω 3 of this class.

A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ

Witold Marciszewski (1997)

Fundamenta Mathematicae

Similarity:

We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions c p ( X ) onto c p ( X ) × ℝ . I n p a r t i c u l a r , cp(X) i s n o t l i n e a r l y h o m e o m o r p h i c t o cp(X) × . One of these examples is compact. This answers some questions of Arkhangel’skiĭ.

Locally constant functions

Joan Hart, Kenneth Kunen (1996)

Fundamenta Mathematicae

Similarity:

Let X be a compact Hausdorff space and M a metric space. E 0 ( X , M ) is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which E 0 ( X , M ) is all of C(X,M). These include βℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of E 0 ( X , M ) as a normed linear space. We also build three first countable...

Dugundji extenders and retracts on generalized ordered spaces

Gary Gruenhage, Yasunao Hattori, Haruto Ohta (1998)

Fundamenta Mathematicae

Similarity:

For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an L c h -extender (resp. L c c h -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous L c h -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology...

Hausdorff dimension and measures on Julia sets of some meromorphic maps

Krzysztof Barański (1995)

Fundamenta Mathematicae

Similarity:

We study the Julia sets for some periodic meromorphic maps, namely the maps of the form f ( z ) = h ( e x p 2 π i T z ) where h is a rational function or, equivalently, the maps ˜ f ( z ) = e x p ( 2 π i h ( z ) ) . When the closure of the forward orbits of all critical and asymptotic values is disjoint from the Julia set, then it is hyperbolic and it is possible to construct the Gibbs states on J(˜f) for -α log |˜˜f|. For ˜α = HD(J(˜f)) this state is equivalent to the ˜α-Hausdorff measure or to the ˜α-packing measure provided ˜α is greater or smaller...

Decomposing Baire class 1 functions into continuous functions

Saharon Shelah, Juris Steprans (1994)

Fundamenta Mathematicae

Similarity:

It is shown to be consistent that every function of first Baire class can be decomposed into 1 continuous functions yet the least cardinal of a dominating family in ω ω is 2 . The model used in the one obtained by adding ω 2 Miller reals to a model of the Continuum Hypothesis.

Interpreting reflexive theories in finitely many axioms

V. Shavrukov (1997)

Fundamenta Mathematicae

Similarity:

For finitely axiomatized sequential theories F and reflexive theories R, we give a characterization of the relation ’F interprets R’ in terms of provability of restricted consistency statements on cuts. This characterization is used in a proof that the set of 1 (as well as 1 ) sentences π such that GB interprets ZF+π is Σ 3 0 -complete.

A forcing construction of thin-tall Boolean algebras

Juan Martínez (1999)

Fundamenta Mathematicae

Similarity:

It was proved by Juhász and Weiss that for every ordinal α with 0 < α < ω 2 there is a superatomic Boolean algebra of height α and width ω. We prove that if κ is an infinite cardinal such that κ < κ = κ and α is an ordinal such that 0 < α < κ + + , then there is a cardinal-preserving partial order that forces the existence of a superatomic Boolean algebra of height α and width κ. Furthermore, iterating this forcing through all α < κ + + , we obtain a notion of forcing that preserves cardinals and such that in the corresponding...

Cantor manifolds in the theory of transfinite dimension

Wojciech Olszewski (1994)

Fundamenta Mathematicae

Similarity:

For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space Z α such that i n d Z α = α , and no closed subset L of Z α with ind L less than the predecessor of α is a partition in Z α . An α-dimensional Cantor Ind-manifold can be constructed similarly.

More set-theory around the weak Freese–Nation property

Sakaé Fuchino, Lajos Soukup (1997)

Fundamenta Mathematicae

Similarity:

We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang’s Conjecture for ω , we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding...

Cofinal Σ 1 1 and Π 1 1 subsets of ω ω

Gabriel Debs, Jean Saint Raymond (1999)

Fundamenta Mathematicae

Similarity:

We study properties of 1 1 and π 1 1 subsets of ω ω that are cofinal relative to the orders ≤ (≤*) of full (eventual) domination. We apply these results to prove that the topological statement “Any compact covering mapping from a Borel space onto a Polish space is inductively perfect” is equivalent to the statement " α ω ω , ω ω L ( α ) is bounded for ≤*".

Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension

Alessandro Andretta, Alberto Marcone (1997)

Fundamenta Mathematicae

Similarity:

We study some natural sets arising in the theory of ordinary differential equations in one variable from the point of view of descriptive set theory and in particular classify them within the Borel hierarchy. We prove that the set of Cauchy problems for ordinary differential equations which have a unique solution is 2 0 -complete and that the set of Cauchy problems which locally have a unique solution is 3 0 -complete. We prove that the set of Cauchy problems which have a global solution is...

An ordinal version of some applications of the classical interpolation theorem

Benoît Bossard (1997)

Fundamenta Mathematicae

Similarity:

Let E be a Banach space with a separable dual. Zippin’s theorem asserts that E embeds in a Banach space E 1 with a shrinking basis, and W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński have shown that E is a quotient of a Banach space E 2 with a shrinking basis. These two results use the interpolation theorem established by W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński. Here, we prove that the Szlenk indices of E 1 and E 2 can be controlled by the Szlenk index of E, where the...

Operators on C(ω^α) which do not preserve C(ω^α)

Dale Alspach (1997)

Fundamenta Mathematicae

Similarity:

It is shown that if α,ζ are ordinals such that 1 ≤ ζ < α < ζω, then there is an operator from C ( ω ω α ) onto itself such that if Y is a subspace of C ( ω ω α ) which is isomorphic to C ( ω ω α ) , then the operator is not an isomorphism on Y. This contrasts with a result of J. Bourgain that implies that there are uncountably many ordinals α for which for any operator from C ( ω ω α ) onto itself there is a subspace of C ( ω ω α ) which is isomorphic to C ( ω ω α ) on which the operator is an isomorphism.

How to recognize a true Σ^0_3 set

Etienne Matheron (1998)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space, and let ( A p ) p ω be a sequence of G δ hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether p ω A p is a true 3 0 subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true 3 0 .

Difference functions of periodic measurable functions

Tamás Keleti (1998)

Fundamenta Mathematicae

Similarity:

We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions Δ h f ( x ) = f ( x + h ) - f ( x ) are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, ( , G ) = H / : ( f G ) ( h H ) Δ h f G , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group 𝕋 = / that are invariant for changes on null-sets...