Entropy and growth of expanding periodic orbits for one-dimensional maps

A. Katok; A. Mezhirov

Fundamenta Mathematicae (1998)

  • Volume: 157, Issue: 2-3, page 245-254
  • ISSN: 0016-2736

Abstract

top
Let f be a continuous map of the circle S 1 or the interval I into itself, piecewise C 1 , piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least e ( h - ε ) n k periodic points of period n k with large derivative along the period, | ( f n k ) ' | > e ( h - ε ) n k for some subsequence n k of natural numbers. For a strictly monotone map f without critical points we show the existence of at least ( 1 - ε ) e h n such points.

How to cite

top

Katok, A., and Mezhirov, A.. "Entropy and growth of expanding periodic orbits for one-dimensional maps." Fundamenta Mathematicae 157.2-3 (1998): 245-254. <http://eudml.org/doc/212289>.

@article{Katok1998,
abstract = {Let f be a continuous map of the circle $S^1$ or the interval I into itself, piecewise $C^1$, piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least $e^\{(h-ε)n_k\}$ periodic points of period $n_k$ with large derivative along the period, $|(f^\{n_k\})^\{\prime \}| > e^\{(h-ε)n_k\}$ for some subsequence $\{n_k\}$ of natural numbers. For a strictly monotone map f without critical points we show the existence of at least $(1-ε) e^\{hn\}$ such points.},
author = {Katok, A., Mezhirov, A.},
journal = {Fundamenta Mathematicae},
keywords = {circle ; piecewise monotone; positive entropy; critical points},
language = {eng},
number = {2-3},
pages = {245-254},
title = {Entropy and growth of expanding periodic orbits for one-dimensional maps},
url = {http://eudml.org/doc/212289},
volume = {157},
year = {1998},
}

TY - JOUR
AU - Katok, A.
AU - Mezhirov, A.
TI - Entropy and growth of expanding periodic orbits for one-dimensional maps
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 2-3
SP - 245
EP - 254
AB - Let f be a continuous map of the circle $S^1$ or the interval I into itself, piecewise $C^1$, piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least $e^{(h-ε)n_k}$ periodic points of period $n_k$ with large derivative along the period, $|(f^{n_k})^{\prime }| > e^{(h-ε)n_k}$ for some subsequence ${n_k}$ of natural numbers. For a strictly monotone map f without critical points we show the existence of at least $(1-ε) e^{hn}$ such points.
LA - eng
KW - circle ; piecewise monotone; positive entropy; critical points
UR - http://eudml.org/doc/212289
ER -

References

top
  1. [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Sci., Singapore, 1993. Zbl0843.58034
  2. [BKP] L. Barreira, A. Katok and Ya. Pesin, Non-Uniformly Hyperbolic Dynamical Systems, monograph in preparation. 
  3. [Bu] J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161. Zbl0889.28009
  4. [GS] P. Góra et B. Schmitt, Un exemple de transformation dilatante et C 1 par morceaux de l’intervalle, sans probabilité absolument continue invariante, Ergodic Theory Dynam. Systems 9 (1989), 101-113. Zbl0672.58023
  5. [Ho] F. Hofbauer, The structure of piecewise monotonic transformations, ibid. 1 (1981), 159-178. Zbl0474.28007
  6. [K1] A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. Math. IHES 51 (1980), 137-173. Zbl0445.58015
  7. [K2] A. Katok, Entropy and closed geodesics, Ergodic Theory Dynam. Systems 2 (1982), 339-367. 
  8. [KH] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, New York, 1995. Zbl0878.58020
  9. [KM] A. Katok and L. Mendoza, Dynamical systems with non-uniformly hyperbolic structure, supplement to [KH], 659-700. 
  10. [Kn] G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, preprint, 1996. 
  11. [KT] T. Krüger and S. Troubetzkoy, Markov partitions and shadowing for diffeomorphisms with no zero exponents, preprint, 1997. 
  12. [LY] T.-Y. Li and J. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183-192. Zbl0371.28017
  13. [Li] D. Lind, Perturbations of shifts of finite type, SIAM J. Discrete Math. 2 (1989), 350-365. Zbl0676.58045
  14. [MlT] J. Milnor and W. Thurston, On iterated maps of the interval, in: Dynamical Systems (College Park, Md., 1986-87), Lecture Notes in Math. 1342, Springer, Berlin, 1988, 465-563. 
  15. [M1] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 27 (1979), 167-169. Zbl0459.54031
  16. [M2] M. Misiurewicz, Continuity of entropy revisited, in: Dynamical Systems and Applications, World Sci. Ser. Appl. Anal. 4, World Sci., 1995, 495-503. Zbl0901.28014
  17. [MS1] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Astérisque 50 (1977), 299-310. Zbl0376.54019
  18. [MS2] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. Zbl0445.54007
  19. [P] Ya. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys 32 (1977), 55-114. 
  20. [Pu] C. C. Pugh, The C 1 + α hypothesis in Pesin theory, Publ. Math. IHES 59 (1984), 143-161. 
  21. [Q] A. Quas, Invariant densities for C 1 maps, Studia Math. 120 (1996), 83-88. Zbl0858.58030

NotesEmbed ?

top

You must be logged in to post comments.