The C 1 + α hypothesis in Pesin theory

Charles C. Pugh

Publications Mathématiques de l'IHÉS (1984)

  • Volume: 59, page 143-161
  • ISSN: 0073-8301

How to cite

top

Pugh, Charles C.. "The $C^{1}+\alpha $ hypothesis in Pesin theory." Publications Mathématiques de l'IHÉS 59 (1984): 143-161. <http://eudml.org/doc/103997>.

@article{Pugh1984,
author = {Pugh, Charles C.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {stable manifold; diffeomorphism},
language = {eng},
pages = {143-161},
publisher = {Institut des Hautes Études Scientifiques},
title = {The $C^\{1\}+\alpha $ hypothesis in Pesin theory},
url = {http://eudml.org/doc/103997},
volume = {59},
year = {1984},
}

TY - JOUR
AU - Pugh, Charles C.
TI - The $C^{1}+\alpha $ hypothesis in Pesin theory
JO - Publications Mathématiques de l'IHÉS
PY - 1984
PB - Institut des Hautes Études Scientifiques
VL - 59
SP - 143
EP - 161
LA - eng
KW - stable manifold; diffeomorphism
UR - http://eudml.org/doc/103997
ER -

References

top
  1. [1] A. FATHI, M. HERMAN and J. C. YOCCOZ, A proof of Pesin's Stable Manifold Theorem, preprint of Université de Paris-Sud, Orsay, France. Zbl0532.58012
  2. [2] E. A. GONZALES VELASCO, Generic Properties of Polynomial Vector Fields at Infinity, Trans. AMS, 143 (1969), 201-222. Zbl0187.34401MR40 #6005
  3. [3] M. HIRSCH, C. PUGH and M. SHUB, Invariant Manifolds, Springer Lecture Notes, 583, 1977. Zbl0355.58009MR58 #18595
  4. [4] A. KATOK, Lyapunov Exponents, Entropy and Periodic Orbits for Diffeomorphisms, Publ. Math. IHES, 51 (1980), 137-173. Zbl0445.58015MR81i:28022
  5. [5] R. Mañé RAMIREZ, Introducão à Teoria Ergódica, IMPA, 1979. 
  6. [6] V. I. OSELEDEC, Multiplicative Ergodic Theorem, Lyapunov Characteristic Exponents for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. Zbl0236.93034MR39 #1629
  7. [7] Y. B. PESIN, Families of Invariant Manifolds Corresponding to Nonzero Characteristic Exponents, Math. USSR Izvestija, 10 (1976), 1261-1305. Zbl0383.58012
  8. [8] Y. B. PESIN, Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, 32 (1977), 4, 55-114. Zbl0383.58011
  9. [9] D. RUELLE, Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. IHES, 50 (1979), 27-58. Zbl0426.58014MR81f:58031
  10. [10] S. STERNBERG, Local Cn Transformations of the Real Line, Duke Mathematical Journal, 24 (1957), 97-102. Zbl0077.06201MR21 #1371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.